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EXECUTIVE SUMMARY 

Multi-mechanism flood (MMF) events are caused by the combined effects of more than one flooding 

mechanism. Although floods can result from the occurrence of individual flood mechanisms, they can 

(and often do) result from multiple flooding mechanisms. MMF events may be more severe than single-

mechanism events, or they may differ in characteristics. To facilitate comprehensive risk-informed 

decision-making to protect against and mitigate the effects of flood events, understanding the hazard 

contributions from MMFs is important. Nevertheless, conventional probabilistic flood hazard assessment 

approaches typically focus on individual flood hazard mechanisms. This report is part of a research 

project funded by the US Nuclear Regulatory Commission (NRC) intended to assist NRC in developing 

the technical basis for guidance on developing probabilistic estimates of flood hazards for combinations 

of flood mechanisms. Specifically, the purpose of this report is to document two case studies to illustrate 

approaches for quantifying MMF hazards for inland and coastal flooding scenarios. 

This report documents the third of a series of tasks under the NRC-sponsored research project Methods 

for Estimating Joint Probabilities of Coincident and Correlated Flooding Mechanisms for Nuclear Power 

Plant Flood Hazard Assessments. These three main project research tasks are as follows: 

• Task 1: Survey of current concepts and methods in assessing MMF hazards 

• Task 2: Critical assessment of selected methods and approaches for quantifying probabilistic MMF 

hazard risk 

• Task 3: Development of example case studies to illustrate best practices for quantifying probabilistic 

MMF hazard risk 

Tasks 1 and 2 have been published by Bensi et al. (2020), which summarized the current state of practice 

in the probabilistic assessment of MMFs. Based on the critical review and insights developed under 

Tasks 1 and 2, the research team selected two case studies to illustrate approaches for quantifying 

probabilistic MMF hazards. These example case studies leverage empirical data, as well as synthetic data 

generated from numerical and surrogate modeling approaches. The case studies use Bayesian-motivated 

and copula-based approaches and were developed for inland and coastal flooding hazards. Specifically, 

the first case study focuses on rainfall- and snowmelt-driven extreme streamflow events. It uses copulas 

as the main computational approach. The second case study considers coastal flooding hazards caused by 

rainfall and storm surge and uses a Bayesian-motivated approach for probabilistic hazard assessment. 
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1. INTRODUCTION 

1.1 PURPOSE 

Multi-mechanism flood (MMF) events are caused by the combined effect of more than one flooding 

mechanism (e.g., flood events caused by the simultaneous occurrence of precipitation-induced river 

flooding and storm surge). Most conventional probabilistic flood hazard assessment (PFHA) approaches 

focus on individual flood hazard mechanisms. However, MMF events may be more severe than single-

mechanism events, or they may differ in characteristics. Therefore, realistic probabilistic assessment of 

flooding hazards requires consideration of MMFs. The purpose of this report is to document two case 

studies to illustrate approaches for quantifying probabilistic MMF hazards. 

1.2 CONTEXT 

This report was developed through a research project funded by the US Nuclear Regulatory Commission 

(NRC) intended to assist NRC in developing the technical basis for guidance on developing probabilistic 

estimates of flood hazards for combinations of flood mechanisms. This research project is a part of the 

NRC PFHA Research Program and will support development of guidance on the use of PFHA methods in 

safety evaluations for existing or proposed US nuclear power plant infrastructure. 

According to the NRC PFHA Research Plan (NRC 2014), 

the current limited risk-informed guidance with respect to flooding constitutes a significant gap in 

the NRC’s risk-informed, performance-based regulatory approach to the assessment of natural 

hazards and potential consequences for safety of commercial nuclear facilities. 

According to Safety Strategy 2 of the NRC Strategic Plan for Fiscal Years 2018–2022 (NRC 

2018), NRC aims to 

further risk-inform the current regulatory framework in response to advances in science and 

technology, policy decisions, and other factors, including prioritizing efforts to focus on the most 

safety-significant issues. 

To support this strategy, NRC (NRC 2018) identifies a contributing activity to 

conduct research activities to confirm the safety of operations and enhance the regulatory 

framework by addressing changes in technology, science, and policies.  

The research effort documented in this report supports this activity. 

This report documents the third of a series of tasks under the NRC-sponsored research project Methods 

for Estimating Joint Probabilities of Coincident and Correlated Flooding Mechanisms for Nuclear Power 

Plant Flood Hazard Assessments. These three main project research tasks are as follows: 

• Task 1: Survey of current concepts and methods in assessing MMF hazards 

• Task 2: Critical assessment of selected methods and approaches for quantifying probabilistic MMF 

hazard risk 

• Task 3: Development of example case studies to illustrate best practices for quantifying probabilistic 

MMF hazard risk 
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Tasks 1 and 2 have been completed. The main outcomes of Tasks 1 and 2 include documentation of (1) a 

reconnaissance-level survey of the current state of concepts and practice for MMF hazard assessment; 

(2) a generalized MMF assessment framework to address the distinctions among flood-forcing 

phenomena, flood mechanisms (which are categorized into three types of mechanisms), and flood severity 

metrics; (3) a wide-ranging survey of approaches and methods that have been applied to various flooding 

phenomena and settings; and (4) a critical assessment of MMF hazard assessment methods. The critical 

review placed particular emphasis on assessing research and applied guidance from the perspective of 

nuclear power plant and other critical infrastructure applicability, which focuses on severe events with 

low annual frequencies of exceedance (long return periods). The methods and results of Tasks 1 and 2 are 

documented elsewhere (Bensi et al. 2020). 

Based on the critical review and insights developed in performing Tasks 1 and 2, the research team 

selected two case studies to illustrate approaches for probabilistic assessment of MMF hazards. These 

example case studies leverage empirical data as well as synthetic data generated from numerical and 

surrogate modeling approaches. The case studies use Bayesian-motivated and copula-based approaches 

and have been developed for inland and coastal flooding hazards. 

1.3 REPORT SCOPE 

This report documents two use case studies. The first case study focuses on rainfall- and snowmelt-driven 

extreme streamflow events. It uses copulas as the main computational approach. The case study 

application is intended to demonstrate 

(1) general procedures to construct multivariate joint distributions using copulas, 

(2) the identification of extreme samples for multivariate frequency analysis, 

(3) the selection of suitable marginal distributions and copula functions, 

(4) applications of copula-derived joint distributions in PFHA, and 

(5) strengths and limitations of the copula-based MMF assessment approach. 

The second case study considers coastal hazards and uses a Bayesian-motivated approach for probabilistic 

hazard assessment. The case study builds off of the established joint probability method commonly 

employed for the assessment of tropical cyclone-induced coastal storm surge hazards (Toro et al. 2010). 

The flood forcing phenomenon is a tropical cyclone (hurricane), and the flood mechanisms involved in 

the analysis include hurricane-induced surge, precipitation, and river flow. The research objective is to 

develop a hazard curve for river discharge accounting for the effects of river base flow, hurricane-induced 

surge, tides, and precipitation-induced runoff. The case study application is intended to demonstrate 

(1) the general conceptual approach to construct multivariate joint distributions using Bayesian modeling 

approaches, 

(2) the development and use of requisite marginal and conditional distributions (including use of 

numerical, empirical, or surrogate models to define conditional relationships between quantities), and 

(3) the quantification of joint distributions and development of hazard curves. 
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In both cases, the studies demonstrate processes and concepts. They include the use of illustrative models 

and assumptions and do not provide a definitive hazard assessment for the target location. 
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2. INLAND MMF USE CASE STUDY 

2.1 INTRODUCTION 

Among various potential hazards, combined rainfall- and snowmelt-driven extreme streamflow events 

were studied. With the trend of earlier snowmelt in recent decades (mostly due to atmospheric warming; 

Ashfaq et al. 2013), there is a growing interest in understanding how peak streamflow estimates and the 

corresponding hazard curves may be affected by the co-occurrence of major streamflow and snowmelt 

events. As opposed to the conventional univariate analysis that only analyzes the time series of 

streamflow to derive hazard curves, copulas were used to construct joint distributions that combine 

multiple variables (e.g., streamflow, precipitation, temperature, and snowmelt) for the derivation of 

conditional hazard curves. This inland case study serves as an example of copula-based analysis, which 

can be expanded for broader MMF analyses in a variety of PFHA applications. It should be interpreted as 

a demonstration of a process rather than a definitive hazard assessment for the target location. 

2.2 INLAND CASE STUDY SCOPE AND SETTINGS 

To select suitable study areas (watersheds) in this case study, the following criteria were considered: 

• Long-term historic streamflow observations should be available at the watershed outlet to support 

model validation and frequency analysis. 

• Existing hydrologic model with acceptable performance should be available at the selected watershed 

to simulate snow processes and further data synthetization. 

• To avoid overcomplicating the use case study, the watershed should not be under strong flow 

regulation (e.g., presence of major dams). A headwater basin is preferred. 

• Significant snowpack is expected in the watershed to enable the assessment of snowmelt-influenced 

events. 

To help effectively identify suitable study areas, watersheds documented in the Catchment Attributes and 

Meteorological for Large-sample Studies (CAMELS) data set (Newman et al. 2014; Addor et al. 2017) 

were leveraged. CAMELS is a community data set that provides daily meteorologic and streamflow 

observations for 671 small- to medium-sized watersheds across the contiguous United States. Watersheds 

in this data set have minimal human interference and span diverse climatic and geographical conditions, 

making it suitable for this analysis. Among CAMELS watersheds with snow fraction (i.e., fraction of 

snow days) greater than 40%, three watersheds that have the largest annual average streamflow were 

selected: 

• S1: Clearwater River at Orofino, Idaho (USGS ID: 13340000) 

• S2: Yellowstone River at Corwin Springs, Montana (USGS ID: 06191500) 

• S3: NF (North Fork) Clearwater River NR (near) Canyon Ranger Station, Idaho (USGS ID: 

13340600) 

Further information of these three selected study areas is shown in Table 2-1 and Figure 2-1. The size of 

these watersheds ranges from 3,357 to 1,4263 km2, and the mean elevation ranges from 569 to 2,542 m. 

At each watershed, two types of data are available: 
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(1) Observations: Given the design of CAMELS, long-term USGS daily streamflow gage stations are 

available at the outlet of each watershed. In addition, daily meteorological observations (e.g., 

precipitation, temperature) from Daymet (Thornton et al. 1997) were collected to support joint 

probability analysis. 

(2) Observation-driven hydrologic model outputs: To simulate snow processes in each watershed, an 

existing contiguous US Variable Infiltration Capacity (VIC) model implemented by Oubeidillah et al. 

(2014) and Naz et al. (2016) was leveraged. The historic Daymet meteorological forcings were used 

to drive VIC to estimate surface runoff, base flow, evapotranspiration, snow water equivalent (SWE), 

and other hydrologic variables. The total runoff (surface runoff + base flow) from VIC was then used 

to simulate daily streamflow by the Routing Application for Parallel Computation of Discharge 

(RAPID) (David et al. 2011) routing model along the NHDPlus (National Hydrography Dataset Plus) 

(McKay et al. 2012) river network. Satisfactory model performance (R2 > 0.7) was identified by 

comparing the simulated VIC-RAPID with observed USGS daily streamflow at each watershed 

outlet. 

Table 2-1. Selected watersheds in the inland MMF case study. 

Site 

ID 
Site name 

Watershed 

area (km2) 

USGS gage/ 

period 

Annual mean 

flow (m3/s) 

Mean 

elevation (m) 

VIC-RAPID 

daily R2 

S1 
Clearwater River at 

Orofino, Idaho 
14,263 

13340000 

(1965–present) 
247.2 1451 0.74 

S2 
Yellowstone River at 

Corwin Springs, Montana 
6,775 

06191500 

(1911–present) 
88.6 2542 0.80 

S3 

NF Clearwater River NR 

Canyon Ranger Station, 

Idaho 

3,357 
13340600 

(1867–present) 
98.2 569 0.71 

 

  

Figure 2-1. Location of selected MMF watersheds. 

The case study specifically focused on four variables: daily streamflow (Qdy, m3/s), 3-day total 

precipitation (P3d, mm), 3-day average temperature (T3d, °C), and change of 3-day SWE (dS3d, mm). Daily 

streamflow Qdy has been the main target in a variety of flood hazard assessment studies. The other three 

variables were selected based on their potential relevance to snowmelt to explore how these variables may 

affect the development of MMF hazard curves. The timing of Qdy occurred at the third day of P3d, T3d, and 

dS3d. For convenience, the change of SWE was calculated by past minus future so that a positive value of 

SWE change refers to a reduction in SWE. 
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Considering the common periods when all data are available, watershed-average daily time series of these 

four variables from 1980 to 2015 were calculated. Although gage-based snow observations are also 

available at some locations in the watersheds, they only reflect gage-specific snow cover conditions and 

cannot be used to represent the overall snowpack status in a watershed. The VIC hydrologic model, on the 

other hand, simulates snow processes within each grid cell with varying elevation bands across the entire 

watershed. Thus, VIC can be suitable to simulate the watershed-scale SWE status. The model-based SWE 

is a reasonable and sufficient choice to demonstrate multivariate copula analysis for the purpose of this 

case study. Alternative snow data can be explored when conducting site-specific MMF analysis at 

different study areas. 

2.3 METHODOLOGY 

The assessment of this inland copula-based MMF analysis includes the following steps. A conceptual 

diagram is illustrated in Figure 2-2. 

(1) Selection of maximum events: Given that the maximum events of each variable occur at different 

time, the selection of maximum events in a multivariate setting becomes nontrivial. In this case study, 

different ways to define maximum events were tested, and their impacts on the constructed joint 

distributions were compared. 

(2) Selection and fitting of marginal distributions: The conventional univariate frequency analysis 

approach was used to select and fit suitable marginal distribution of each variable. Commonly used 

probability density functions (PDFs) were tested and selected. 

(3) Selection and fitting of copula functions: Conceptually similar to the selection of marginal 

distributions, several commonly used copula functions such as Frank, Gumbel, Clayton, Gaussian, 

and t copulas were tested and selected to represent the dependence structures between pairs of 

variables. 

(4) Goodness-of-fit tests: Rank-based empirical distribution and several commonly used goodness-of-fit 

tests (e.g., Kolmogorov-Smirnov [KS], Cramér–von Mises [CM], Akaike information criterion [AIC], 

Bayesian information criterion [BIC]) were used in the case study to demonstrate how these tests may 

be used to evaluate and select suitable marginal and copula functions. 

(5) Construction of joint distributions: The forming of joint distribution through the connection of 

marginal distributions and a copula function was demonstrated. The challenges and some special 

considerations when constructing joint distributions with higher dimensions (i.e., greater than 2) are 

discussed. 

(6) Application of derived joint distribution: Finally, how to use the derived joint distribution for 

potential PFHA applications is demonstrated (e.g., for given snow and temperature conditions, how to 

derive the conditional peak streamflow distribution and use them for flood hazard curve calculation). 
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Figure 2-2. Assessment procedures of inland copula-based analysis. 

2.4 SELECTION OF MAXIMUM EVENTS 

In the conventional univariate frequency analysis, two methods are commonly used to select maximum 

events for PDF fitting: annual maximum, and peak-over-threshold (Rao and Hamed 2000). Both methods 

focus on identifying the maxima of a single variable without considering its relationships with other 

variables. Because the annual maximums of the variables occur at different times, selecting maximum 

events in a multivariate setting is challenging. Taking data from S2 as an example, the histograms of 

months when annual maximum events occur are shown in Figure 2-3. For this site, none of the variables 

had consistent annual maximum timing; most peaks for dS, Q, and T occurred in April, May, and July, 

respectively, and P had no clear peak. This suggests that different maximum event concepts and 

definitions are required for multivariate frequency analysis. 

 

Figure 2-3. Annual maximum timing (count) of the selected variables (S2; 1980–2015). 

To understand how different maximum event definitions may affect the constructed joint distributions, 

three ways to search maximum events were compared for each study area: 

• M1—univariate maximum: In this approach, the maximum daily streamflow (Qdy) in each year was 

identified. The corresponding values of other variables (P3d, T3d, and dS3d) were then identified to 

form the set of maximum events for fitting. Because the selection is only based on Qdy, other variables 

can be small. 

Selection of maximum 
events 

Fitting of marginal 
distributions 

Fitting of copula functions 

Distribution selection 
and goodness-of-fit tests 

Function selection 
and goodness-of-fit tests 

Construction & applications 
of joint distributions 
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• M2—multivariate peak-over-threshold: In this approach, an average sampling rate r (e.g., 5 events 

per year) was set up. Then, a quantile threshold q was gradually lowered from 100% to select events 

that satisfy {Qdy > Qdy,q}∩{P3d > P3d,q}∩{T3d > T3d,q}∩{dS3d > dS3d,q}, in which Qdy,q, P3d,q, T3d,q, and 

dS3d,q are the q quantile of Qdy, P3d, T3d, and dS3d. During the selection, events within ±3 days of other 

selected events were not selected. The process stopped when a total number of (r × years) events was 

identified. Clearly, the quantile levels do not need to be the same for each variable. However, to 

simplify the case study, the same quantile level was used for consistency across all variables. Other 

M2 examples were examined by Kew et al. (2013) and Bevacqua et al. (2019). 

• M3—maximum joint empirical probability: In this approach, the cumulative joint empirical 

probability of each data point (qdy, p3d, t3d, ds3d) (i.e., P[{Qdy ≤ qdy}∩{P3d ≤ p3d}∩{T3d ≤ t3d}∩{dS3d ≤ 

ds3d}]) was calculated. Then, an average sampling rate r was set up, and the top (r × years) events 

with higher cumulative empirical probability values were selected. Similar to in M2, events within 

±3 days of other selected larger events were not selected. A similar method was used and discussed 

by Kao and Govindaraju (2007). 

To focus on snowmelt-related events, the search was further limited to the months of April through June. 

With 36 years of data (1980–2015), a sampling rate of an average of 5 events per year was selected for 

both M2 and M3 so that 180 maximum events per method could be gathered for analysis. An example of 

Qdy versus dS3d for S2 is shown in Figure 2-4. Among the three methods, both M2 and M3 look more 

similar to each other than either one to M1, with the only difference being in the lower corner of both 

variables. Given the design, M1 selected less events. It did not capture any dS3d > 45 mm, and also missed 

many large Qdy likely in wetter years. This could cause some issues during multivariate frequency 

analysis that are demonstrated in the following sections. 

 

Figure 2-4. An example of maximum event selection (left: M1; middle: M2; right: M3) for S2. The grey crosses 

show all data points and blue circles show the selected maximum events by each method. 

2.5 FITTING AND SELECTION OF MARGINAL DISTRIBUTIONS 

For copula-based multivariate analysis, the first step is to determine the most suitable PDF 𝑓(𝑥) and 

cumulative distribution function (CDF) 𝐹(𝑥) for each variable (i.e., marginal distributions). Because this 

step can be achieved through conventional univariate frequency analysis, many existing tools and 

methods can be used to help select distributions and estimate their parameters. In this case study, the 

MATLAB statistical toolbox was used. Five commonly used distributions are tested, including log-

Pearson type III (LP3), generalized extreme value (GEV), lognormal (LN), gamma (GM), and normal 

(NOR) distributions. Rao and Hamed (2000), as well as other statistical analysis textbooks, provided the 

theoretical background of univariate analysis. Model parameters were estimated by the maximum 

likelihood method. 
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To assess the goodness-of-fit, KS and CM tests at a 5% significance level were used. Additionally, the 

fitted CDF 𝐹(𝑥) was compared with the empirical CDF 𝐹𝑒𝑚𝑝(𝑥) derived from the Gringorton plotting 

position formula: 

 𝐹𝑒𝑚𝑝(𝑥) =
𝑚−0.44

𝑛+0.12
 , (2.1) 

where n is the total number of samples, and m is the rank in the ascending order. For the selection of a 

suitable distribution, AIC (Akaike 1973) and BIC (Schwarz 1978) were used to help select a suitable 

distribution. Their formulations are as follows: 

 AIC = −2 × (log-likelihood) + 2 × (numParam) , (2.2) 

 BIC = −2 × (log-likelihood) + numParam × log(numObs) , (2.3) 

where log-likelihood refers to the log of likelihood function that can be calculated by the product of PDF 

values with fitted parameters across all samples, numParam is the number of parameters in a PDF, and 

numObs is the number of observations. In general, AIC and BIC consider the joint effects of fitting 

(likelihood) and the number of parameters. A smaller AIC and/or BIC value suggests better performance 

of a selected PDF. Additionally, the differences between fitted and empirical CDFs on the hazard curves 

were compared to help determine the most suitable PDF. The results of marginal distributions were 

compared first across different maximum events and then across different study areas. 

2.5.1 Comparison across different maximum events 

Taking S2 as an example, the five distributions were fitted to three sets of maximum events of each 

variable. If a distribution failed to pass KS and CM tests, they are excluded from further consideration. 

The resulting AIC and BIC values of each fitted distribution are summarized in Table 2-2. 

To help visualize the differences among fitted CDFs, hazard curves (i.e., magnitude of extremes versus 

return periods) of each variable were plotted. For a random variable X with T-year return period, 𝑥(𝑇) can 

be calculated by 

 𝑥(𝑇) = 𝐹−1 (1 −
1

𝑇∗𝑟
) , (2.4) 

where 𝐹−1 is the inverse CDF, T is the return period in years, and r is the average sampling rate. In this 

case study, r = 1 for M1 events, and r = 5 for M2 and M3 events. 
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Table 2-2. Fitting of marginal distributions using three maximum event searching approaches for S2 

(USGS ID: 06191500). 

 Streamflow (Qdy) Precipitation (P3d) Temperature (T3d) SWE change (dS3d) 

 AIC BIC AIC BIC AIC BIC AIC BIC 

M1 Univariate Maximum 

LP3 — — — — — — — — 

GEV 693.3 698.0 250.4 255.1 183.7 188.5 296.9 301.7 

NOR 695.4 698.5 266.8 270.0 184.9 188.0 296.3 299.4 

LN 691.1 694.2 — — 182.4 185.6 — — 

GM 691.6 694.7 — — 181.0 184.2 — — 

M2 Multivariate Peak-over-threshold 

LP3 3,362.2 3,371.8 — — — — — — 

GEV 3,362.0 3,371.6 985.7 995.3 770.9 780.5 1,298.4 1,308.0 

NOR — — — — 787.6 794.0 — — 

LN 3,368.9 3,375.2 985.4 991.8 767.9 774.3 1,286.9 1,293.3 

GM 3,382.2 3,388.6 996.6 1,003.0 770.3 776.7 1,289.2 1,295.6 

M3 Maximum Joint Empirical Probability 

LP3 3,430.7 3,440.3 — — — — — — 

GEV 3,431.5 3,441.1 1,251.6 1,261.2 800.5 810.1 1,339.1 1,348.7 

NOR — — — — 803.1 809.5 — — 

LN 3,429.8 3,436.2 1,249.5 1,255.9 — — 1,337.1 1,343.5 

GM 3,435.7 3,442.1 1,251.5 1,257.9 800.7 807.1 1,324.5 1,330.9 

 

The hazard curves of daily streamflow (Qdy) are shown in Figure 2-5. They are visualized in semi-log 

scale to emphasize the fitting of the right tail. In terms of the general selection process, KS and CM tests 

were first used to remove unsuitable PDFs. Then, AIC and BIC were used to identify better-fitted PDFs, 

and finally, hazard curves were used to help determine suitable PDFs. For M1, LN and GM provide better 

fits than GEV and NOR based on AIC and BIC. The hazard curves further suggest that GM may provide 

a better fit of the right tail. For M2, LP3 and GEV provide relatively better fits based on AIC and BIC. 

The hazard curves further suggest that LP3 may provide a better fit of the right tail. For M3, LP3 and LN 

provide relatively better fits based on AIC and BIC. Although the hazard curves show that LN may 

provide a slightly better fit than LP3, LP3 was eventually selected because of its overall good fitting of 

peak streamflow across multiple sites and maximum searching methods. 
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Figure 2-5. Fitting of Qdy using maximum events identified by (left) M1, (middle) M2, and (right) M3 for S2. 

Given the nature of the annual maximum searching approach, the sample size of M1 is much smaller than 

M2 and M3. This size explains why M1 tends to provide smaller estimates than M2 and M3. Also, 

although LP3 has been a widely accepted distribution for streamflow, suitable LP3 parameters cannot be 

found for M1. Again, this could be because of the smaller sample size of M1. Although LP3 did not 

provide the lowest AIC and BIC values for M2 and M3, it overall performed well and seemed to have a 

more reasonable tail behavior in M2. Since LP3 is commonly used for peak streamflow analysis, it is a 

good choice to model Qdy in M2 and M3. 

Hazard curves for 3-day total precipitation (P3d) are shown in Figure 2-6. For M1, NOR provides the 

relative best fit. Because M1 events were selected based on the annual maximum Qdy, the corresponding 

P3d could sometimes be small and makes the fitting more challenging. For M2 and M3, GEV and LN 

provide the relative best fits. Because LN has a more reasonable tail behavior in M2, LN is a better choice 

for both M2 and M3. The hazard curves of 3-day average temperature (T3d) are shown in Figure 2-7. For 

M1, GM provides the relative best fit. Although the hazard curves also suggest that GEV may provide 

good fits of the right tail, its overall fitting is relatively poor and thus affected its AIC and BIC values. For 

M2, both LN and GEV provide a good fit, and for M3, GEV provides the best fit. Overall, the M1 results 

are more different than M2 and M3. Again, this difference may be caused by their different sample sizes. 

Finally, the hazard curves of the decrease of 3-day SWE reduction (dS3d) are shown in Figure 2-8. For 

M1, both GEV and NOR provide relative better fits, and for M2 and M3, GM provides the relative best 

fit. 

 

Figure 2-6. Fitting of P3d using maximum events identified by (left) M1, (middle) M2, and (right) M3 for S2. 
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Figure 2-7. Fitting of T3d using maximum events identified by (left) M1, (middle) M2, and (right) M3 for S2. 

 

Figure 2-8. Fitting of dS3d using maximum events identified by (left) M1, (middle) M2, and (right) M3 for S2. 

2.5.2 Comparison across different study areas 

This section shows the difference of marginal distributions across the three study areas. Taking M2 

maximum events as an example, the five distributions were fitted across S1–S3 study areas. If a 

distribution failed to pass KS and CM tests, it was excluded from further consideration. The resulting AIC 

and BIC values are summarized in Table 2-3. 
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Table 2-3. Fitting of marginal distributions using M2 for the three study areas. 

 Streamflow (Qdy) Precipitation (P3d) Temperature (T3d) SWE Change (dS3d) 

 AIC BIC AIC BIC AIC BIC AIC BIC 

S1 Clearwater River at Orofino, ID (USGS ID: 13340000) 

LP3 3,593.4 3,603.0 — — 794.0 803.5 — — 

GEV 3,595.7 3,605.2 1,070.8 1,080.4 792.7 802.3 1,151.6 1,161.2 

NOR — — 1,116.5 1,122.9 — — — — 

LN 3,626.5 3,632.9 1,066.7 1,073.1 803.3 809.7 1,157.4 1,163.8 

GM — — 1,070.3 1,076.7 811.3 817.7 — — 

S2 Yellowstone River at Corwin Springs, MT (USGS ID: 06191500) 

LP3 3,362.2 3,371.8 — — — — — — 

GEV 3,362.0 3,371.6 985.7 995.3 770.9 780.5 1,298.4 1,308.0 

NOR — — — — 787.6 794.0 — — 

LN 3,368.9 3,375.2 985.4 991.8 767.9 774.3 1,286.9 1,293.3 

GM 3,382.2 3,388.6 996.6 1,003.0 770.3 776.7 1,289.2 1,295.6 

S3 NF Clearwater River NR Canyon Ranger Station, ID (USGS ID: 13340600) 

LP3 3,308.8 3,318.4 — — 772.7 782.3 — — 

GEV 3,309.9 3,319.5 1,151.2 1,160.8 772.2 781.8 — — 

NOR — — — — — — — — 

LN 3,342.0 3,348.4 1,145.6 1,151.9 790.4 796.8 — — 

GM — — 1,154.4 1,160.8 801.9 808.3 1,441.8 1,448.2 

 

The hazard curves of daily streamflow (Qdy) are shown in Figure 2-9. Despite the different site 

characteristics, the fitting results here are generally consistent across the three study areas. For all sites, 

LP3 provides the best (or nearly best) AIC and BIC values. The tail behaviors of LP3 are more reasonable 

than GEV in the hazard curves, which is consistent with the general understanding that LP3 is a suitable 

distribution for peak streamflow analysis. Therefore, LP3 is a good choice to model M2 Qdy events across 

all sites. 

 

Figure 2-9. Fitting of Qdy using M2 maximum events for (left) S1, (middle) S2, and (right) S3. 

The hazard curves of 3-day total precipitation (P3d) are shown in Figure 2-10. Again, despite different site 

characteristics, LN performs the best across the three sites and is a suitable choice for follow-up analysis. 

The hazard curves of 3-day average temperature (T3d) are shown in Figure 2-11. Based on the AIC and 
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BIC values and hazard curves, both GEV and LN provide good fits. The hazard curves of the 3-day SWE 

reduction (dS3d) are shown in Figure 2-12. For S1, LN provides the best fit, whereas for S2 and S3, GM 

provides the best fit. 

 

Figure 2-10. Fitting of P3d using M2 maximum events for (left) S1, (middle) S2, and (right) S3. 

 

Figure 2-11. Fitting of T3d using M2 maximum events for (left) S1, (middle) S2, and (right) S3. 

 

Figure 2-12. Fitting of dS3d using M2 maximum events for (left) S1, (middle) S2, and (right) S3. 

Overall, different maximum event searching approaches seem to have more profound effects than 

different sites. The results of annual maximum–based M1 events are more different than peak-over-

threshold–based M2 and M3 events. This difference can be largely affected by the number of samples, in 

which five times larger samples are allowed in M2 and M3 so that they may capture more larger events in 
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a wetter (or hotter) year. More importantly, because M1 only identifies the maximum Qdy events, other 

variables can be quite small and lead to lower estimates than M2 and M3. The smaller sample size of M1 

is also too limited to support multivariate analysis. Because of various disadvantages, M1 was excluded in 

the following analysis. The selected marginal distributions and their parameters are summarized in Table 

2-4. 

Table 2-4. Selected marginal distribution and fitted parameters. 

Variables 
Selected 

distribution 

Location  

parameter (µ) 

Scale  

parameter (α) 

Shape  

parameter (ξ) 

S1 Clearwater River at Orofino, ID; M2 Multivariate Peak-over-threshold 

Streamflow (Qdy) LP3 5.8112 0.1357 4.1249 

Precipitation (P3d) LN 2.28162 0.474342 — 

Temperature (T3d) LN 2.25578 0.234191 — 

SWE Change (dS3d) LN 1.66314 1.13264 — 

S2 Yellowstone River at Corwin Springs, MT; M2 Multivariate Peak-over-threshold 

Streamflow (Qdy) LP3 3.4186 0.0853 21.8906 

Precipitation (P3d) LN 2.1799 0.419003 — 

Temperature (T3d) LN 1.88482 0.307596 — 

SWE Change (dS3d) GM 2.61021 6.12062 — 

S2 Yellowstone River at Corwin Springs, MT; M3 Maximum Joint Empirical Probability 

Streamflow (Qdy) LP3 4.7865 0.1525 4.3023 

Precipitation (P3d) LN 2.33897 0.557574 — 

Temperature (T3d) GEV 7.91694 1.54965 0.194182 

SWE Change (dS3d) GM 0.814919 24.8653 — 

S3 NF Clearwater River NR Canyon Ranger Station, ID; M2 Multivariate Peak-over-threshold 

Streamflow (Qdy) LP3 2.3983 0.0392 81.1015 

Precipitation (P3d) LN 2.70661 0.515288 — 

Temperature (T3d) GEV 6.0053 2.11848 −0.225228 

SWE Change (dS3d) GM 2.18285 7.61097 — 

Note: For LP3 and GEV, parameter 1 is the location parameter (µ), parameter 2 is the scale parameter (α), and parameter 3 is the 

shape parameter (ξ). For LN, parameter 1 is the location parameter (µ), and parameter 2 is the scale parameter (α). For GM, 

parameter 1 is the shape parameter (α), and parameter 2 is the rate parameter (β).  

 

2.6 FITTING AND SELECTION OF COPULA FUNCTIONS 

Following the selection of marginal distributions, the second step is to determine the most suitable copula 

function 𝐶𝑈𝑉(𝑢, 𝑣) that can couple marginal distributions into a joint probability distribution 𝐹𝑋𝑌(𝑥, 𝑦). 

General mathematical expressions for copula cumulative distribution and density functions are 

 𝐹𝑋𝑌(𝑥, 𝑦) = 𝐶𝑈𝑉(𝑢 = 𝐹𝑋(𝑥), 𝑣 = 𝐹𝑌(𝑦)) = 𝐶𝑈𝑉(𝑢, 𝑣) , (2.5) 

 𝑓𝑋𝑌(𝑥, 𝑦) =
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕2𝐶𝑈𝑉(𝑢,𝑣)

𝜕𝑢𝜕𝑣
= 𝑓𝑋(𝑥)𝑓𝑌(𝑦)𝑐𝑈𝑉(𝑢, 𝑣) , (2.6) 

where 𝐹𝑋𝑌(𝑥, 𝑦) is the joint-CDF (JCDF), and 𝑓𝑋𝑌(𝑥, 𝑦) is the joint-PDF of variables X and Y, 𝑢 = 𝐹𝑋(𝑥) 

is the marginal distribution of X, 𝑣 = 𝐹𝑌(𝑦) is the marginal distribution of Y, 𝐶𝑈𝑉(𝑢, 𝑣) is the copula 
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function, and 𝑐𝑈𝑉(𝑢, 𝑣) is the copula density function. Equation (2.5) can be interpreted as a 

transformation of JCDF from the XY to UV domain. Because U and V are uniformly distributed after this 

transformation, the copula function is hence marginal free and only retains information related to the 

dependence structure among two variables. This important feature allows one to sperate any JCDF into 

two components—marginal distributions and dependence structure. One can identify the most suitable 

mathematical expressions of both components and then combine them to form a JCDF. The approach is 

flexible and compatible to most existing JCDF models, such as bivariate Gaussian and exponential 

distributions. Nelsen (2006) provided the theoretical background of copulas. 

Although the concept of copulas is relatively new compared with conventional univariate frequency 

analysis, the procedure is conceptually similar. It starts by selecting and fitting different copula functions. 

In this case study, five commonly used copula functions were tested: Gaussian (GAU), t with degree of 

freedom = 2 (TD2), Frank (FRK), Clayton (CLT), and Gumbel (GUM). The first two copulas (GAU and 

TD2) belong to the family of meta-elliptical copulas, which are transformations of the well-known meta-

elliptical distributions that include both multivariate Gaussian and t distributions (Genest et al. 2007). The 

other three copulas (FRK, CLT, and GUM) belong to a special class of Archimedean copulas. For each 

Archimedean copula, a generator 𝜙 exists such that the following relationship holds: 

 𝜙(𝐶𝑈𝑉(𝑢, 𝑣)) = 𝜙(𝑢) + 𝜙(𝑣) , (2.7) 

where the generator 𝜙 should be a continuous strictly decreasing function in [0,1] with 𝜙(0) = ∞ and 

𝜙(1) = 0, and the inverse 𝜙−1 should be strictly monotonic (Nelsen 2006). For Archimedean copulas, 

several statistical properties can be simply expressed in terms of the generator 𝜙, such as the Kendall’s 

concordance measure 𝜏: 

 𝜏 = 1 + 4 ∫
𝜙(𝑡)

𝜙′(𝑡)

1

0
𝑑𝑡 . (2.8) 

An example of Frank Archimedean copulas (𝜙(𝑡) = − 𝑙𝑛
𝑒−𝜃𝑡−1

𝑒−𝜃−1
) is shown in Figure 2-13, where the 

parameter θ controls the shape of dependence structure between marginals U and V. 
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Figure 2-13. An example of the Frank copula function. 

For parameter estimation and goodness-of-fit, the rank-based empirical copula 𝐶𝑛 (Nelsen 2006) can be 

used: 

 𝐶𝑛 (
𝑖

𝑛
,

𝑗

𝑛
) =

𝑎

𝑛
 , (2.9) 

where n is the total number of samples, a is the number of pairs (𝑥, 𝑦) with 𝑥 ≤ 𝑥(𝑖) and 𝑦 ≤ 𝑦(𝑗), and 

𝑥(𝑖), 𝑦(𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is the rank of each sample. To estimate the copula function parameter, one can 

either select the inference functions for margins approach that uses fitted marginals, or the canonical 

maximum likelihood approach that uses rank-based empirical marginals to analyze the copulas. Canonical 

maximum likelihood was selected because it is purely based on samples’ rank and is unrelated to the 

selection of marginal CDFs. Another approach that solves the copula parameter using Kendall’s 𝜏 is also 

widely used for the family of Archimedean copulas (e.g., FRK, CLT, GUM; Kao and Govindaraju 2007). 

To assess the goodness-of-fit, the multidimensional KS test (Saunders and Laud 1980) at a 5% 

significance level was used. For the selection of a suitable distribution, AIC and BIC (Eqs. 2.2 and 2.3) 

were used by calculating a likelihood function as the product of copula density values with fitted 

parameters across all samples. The five selected copula functions were fitted to all four cases reported in 

Table 2-4, and the resulting AIC and BIC values are reported in Table 2-5. 
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Table 2-5. Fitting of copula function for the four selected cases. 

 Between Qdy and P3d Between Qdy and T3d Between Qdy and dS3d 

 AIC BIC AIC BIC AIC BIC 

S1 Clearwater River at Orofino, ID; M2 Multivariate Peak-over-threshold 

GAU −0.51 2.68 1.96 5.16 −64.4 −61.2 

TD2 7.40 10.59 28.68 31.87 −34.5 −31.3 

FRK 0.27 3.46 1.86 5.05 −65.1 −61.9 

CLT 0.28 3.47 1.94 5.14 −61.8 −58.6 

GUM −1.54 1.65 2.00 5.19 −46.9 −43.7 

S2 Yellowstone River at Corwin Springs, MT; M2 Multivariate Peak-over-threshold 

GAU −5.39 −2.19 −8.65 −5.46 −40.8 −37.6 

TD2 −15.2 −12.0 −9.09 −5.90 −35.5 −32.3 

FRK −5.46 −2.27 −9.64 −6.45 −36.0 −32.8 

CLT −2.03 1.15 −11.2 −8.01 −36.5 −33.3 

GUM −11.3 −8.15 −8.12 −4.93 −37.3 −34.1 

S2 Yellowstone River at Corwin Springs, MT; M3 Maximum Joint Empirical Probability 

GAU −3.80 −0.61 −5.62 −2.42 −35.2 −32.0 

TD2 28.8 32.0 1.15 4.34 −0.90 2.30 

FRK −1.47 1.72 −5.47 −2.27 −32.4 −29.2 

CLT 2.00 5.19 −2.02 1.18 −22.0 −18.8 

GUM 2.00 5.19 −7.55 −4.36 −30.2 −27.0 

S3 NF Clearwater River NR Canyon Ranger Station, ID; M2 Multivariate Peak-over-threshold 

GAU 0.28 3.48 2.03 5.22 −85.2 −82.0 

TD2 10.64 13.83 10.7 13.9 −57.7 −54.5 

FRK −0.49 2.71 2.01 5.20 −79.8 −76.6 

CLT 1.41 4.61 1.67 4.86 −73.2 −70.0 

GUM −0.01 3.18 2.00 5.19 −69.2 −66.0 

 

To help visualize the results, the spread in both XY and UV domains of each pair of variables were plotted 

with Qdy as shown in Figure 2-14 to Figure 2-17. In addition, Kendall’s distribution function 𝐾𝐶 (Genest 

and Rivest 1993), which projects the cumulative value of a copula into a single dimension (i.e., CDF of a 

copula), was plotted to more easily compare the performance of different copula functions. The 

theoretical formulation and empirical distribution of 𝐾𝐶 are provided as follows. 

 𝐾𝐶(𝑡) = 𝑃[𝐶(𝑢, 𝑣) ≤ 𝑡] , (2.10) 

 𝐾𝐶𝑛
(

𝑙

𝑛
) =

𝑏

𝑛
 , (2.11) 

where 𝐾𝐶𝑛
 is the empirical Kendall’s distribution, and b is the number of pairs (𝑥, 𝑦) in the samples with 

the empirical copula values 𝐶𝑛(𝑖 𝑛⁄ , 𝑗 𝑛⁄ ) ≤ 𝑙 𝑛⁄  (Eq. 2.9). In other words, one may use different l values 

from 1 to n to calculate the empirical copula values 𝐶𝑛 and construct 𝐾𝐶𝑛
. 
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Figure 2-14. Fitting of copulas for S1 using M2 events. The spread in XY and UV domains are shown in the upper 

and middle rows. The Kendall’s distribution function is shown in the lower row. The results between Qdy and P3d, 

Qdy and T3d, and Qdy and dS3d are shown in left, middle, and right columns. 
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Figure 2-15. Fitting of copulas for S2 using M2 events. The spread in XY and UV domains are shown in the upper 

and middle rows. The Kendall’s distribution function is shown in the lower row. The results between Qdy and P3d, 

Qdy and T3d, and Qdy and dS3d are shown in left, middle, and right columns. 
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Figure 2-16. Fitting of copulas for S2 using M3 events. The spread in XY and UV domains are shown in the upper 

and middle rows. The Kendall’s distribution function is shown in the lower row. The results between Qdy and P3d, 

Qdy and T3d, and Qdy and dS3d are shown in left, middle, and right columns. 
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Figure 2-17. Fitting of copulas for S3 using M2 events. The spread in XY and UV domains are shown in the upper 

and middle rows. The Kendall’s distribution function is shown in the lower row. The results between Qdy and P3d, 

Qdy and T3d, and Qdy and dS3d are shown in left, middle, and right columns. 

Overall, the results suggest that the strongest correlation/dependence existed between Qdy and dS3d, with a 

correlation coefficient ranging from 0.40 to 0.53. The correlation between other pairs of variables were 

weaker and were both site- and method-specific. In some cases, slightly negative correlations were also 

found. In terms of suitable copula functions, none was determined to be the best. Best-performing copulas 

were identified among GAU, FRK, CLT, and GUM. In terms of goodness-of-fit, all cases passed the 

multivariate KS test at a 5% significant level, and most of the cases showed reasonable fit on the 𝐾𝐶 plot. 

Because the multivariate KS test and 𝐾𝐶 plots were less discriminating, AIC and BIC values were heavily 

relied upon in selecting suitable copulas. The selected copulas and their parameters are summarized in 

Table 2-6. 
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Table 2-6. Selected copula functions and fitted parameters. 

Variables 
Correlation 

coefficient (ρ) 
Kendall’s τ 

Selected copula 

function 
Copula parameter 

S1 Clearwater River at Orofino, ID; M2 Multivariate Peak-over-threshold 

Qdy and P3d 0.1537 0.0606 GUM 1.0697 

Qdy and T3d −0.0455 −0.0077 FRK −0.0933 

Qdy and dS3d 0.3828 0.4045 FRK 4.0447 

S2 Yellowstone River at Corwin Springs, MT; M2 Multivariate Peak-over-threshold 

Qdy and P3d 0.2381 0.1387 GUM 1.1793 

Qdy and T3d 0.2311 0.1762 CLT 0.3145 

Qdy and dS3d 0.4555 0.3112 GAU 0.4461 

S2 Yellowstone River at Corwin Springs, MT; M3 Maximum Joint Empirical Probability 

Qdy and P3d −0.1256 −0.0906 GAU −0.1637 

Qdy and T3d 0.2428 0.1351 GUM 1.1398 

Qdy and dS3d 0.4287 0.2852 GAU 0.4247 

S3 NF Clearwater River NR Canyon Ranger Station, ID; M2 Multivariate Peak-over-threshold 

Qdy and P3d 0.1071 0.0673 FRK 0.6349 

Qdy and T3d 0.0049 0.0026 CLT 0.0368 

Qdy and dS3d 0.5273 0.4438 GAU 0.6124 

Note: All selected copula functions have one parameter. 

2.7 CONSTRUCTION OF JOINT DISTRIBUTIONS AND POTENTIAL APPLICATIONS 

After the selection of both marginal distributions and the copula function, a JCDF can be formed using 

Eq. (2.5). An example of the constructed bivariate JCDF for S2 using M2 events is shown in Figure 2-18. 

Because this copula-based approach allows for the combination of different types of marginal 

distributions and dependence structures, it provides great flexibility to derive the most suitable JCDF 

based on data. 

 

Figure 2-18. Example of constructed bivariate joint distributions by copulas for S2 using M2 events. 

Additional examples are shown for each site in Figure 2-19 to Figure 2-22. In each figure, the constructed 

JCDFs are colored by different zones, in which the contours represent JCDF values from 0.1 to 0.9 in 0.1 

increments. Contour lines derived from empirical copulas are also included for comparison. Overall, 
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contour lines based on fitted copula are fairly similar to the ones based on empirical copulas, suggesting 

the reasonableness of the derived models. 

 

 

Figure 2-19. Joint distributions and conditional hazard curves of S1 using M2 events. The derived joint 

distributions were compared with the empirical copula values at each 0.1 contour line in the upper panels. 

An example of the conditional hazard curves is shown in the lower panel. 

 

 

Figure 2-20. Joint distributions and conditional hazard curves of S2 using M2 events. The derived joint 

distributions were compared with the empirical copula values at each 0.1 contour line in the upper panels. 

An example of the conditional hazard curves is shown in the lower panel. 
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Figure 2-21. Joint distributions and conditional hazard curves of S2 using M3 events. The derived joint 

distributions were compared with the empirical copula values at each 0.1 contour line in the upper panels. 

An example of the conditional hazard curves is shown in the lower panel. 

 

 

Figure 2-22. Joint distributions and conditional hazard curves of S3 using M2 events. The derived joint 

distributions were compared with the empirical copula values at each 0.1 contour line in the upper panels. 

An example of the conditional hazard curves is shown in the lower panel. 

The derived JCDF allows a variety of applications. For instance, with a given condition of interest such as 

{dS3d > a}, the conditional distribution of Qdy can be written as 
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 𝐹𝑄𝑑𝑦
(𝑥|𝑑𝑆3𝑑 > 𝑎) =

𝐹𝑄𝑑𝑦,𝑑𝑆3𝑑
(𝑥,𝑎)

1−𝐹𝑑𝑆3𝑑
(𝑎)

 . (2.12) 

By plugging Eq. (2.10) into Eq. (2.4), the conditional hazard curves of Qdy were estimated. Seven hazard 

curves were plotted: 

• Univariate: hazard curves derived by marginal distributions (from Section 2.5.1) 

• {P3d < P3d,20%}: conditional hazard curves when P3d is less than the 20% quantile of P3d 

• {T3d < T3d,20%}: conditional hazard curves when T3d is less than the 20% quantile of T3d 

• {dS3d < dS3d,20%}: conditional hazard curves when dS3d is less than the 20% quantile of dS3d 

• {P3d > P3d,80%}: conditional hazard curves when P3d is greater than the 80% quantile of P3d 

• {T3d > T3d,80%}: conditional hazard curves when T3d is greater than the 80% quantile of T3d 

• {dS3d > dS3d,80%}: conditional hazard curves when dS3d is greater than the 80% quantile of dS3d 

The results show that a stronger correlation (such as between Qdy and dS3d) would lead to larger 

differences in conditional hazards, and vice versa. Therefore, the copula-based analysis can be applied if 

highly correlated variables can be identified. However, if the correlation between two variables is weak or 

statistically insignificant, one may not need to conduct multivariate analysis since the results will not be 

very different from the conventional univariate analysis. In the inland case study, the change of SWE had 

the highest correlation to streamflow and is the most important ancillary variable for the development of a 

multivariate distribution to analyze MMF and develop hazard curves. 

2.8 DISCUSSION 

Based on this inland case study, strengths and limitations of the copula-based MMF assessment approach 

were identified as described here. 

• Compatibility with the conventional univariate frequency analysis: One important advantage of 

the copulas-based assessment approach is that it can build on the existing understanding of univariate 

frequency analysis. Many existing theories and tools can continue to be applied for analyzing 

marginal distributions. Additionally, similar to the selection of suitable PDFs to represent marginal 

distributions, a variety of copula functions can be tested and selected to represent dependence 

structure and form multivariate joint distributions. Although the concept of multivariate joint 

distribution may seem complicated, copulas can provide a natural extension to help better understand 

and leverage the existing univariate PFHA tools for multivariate applications. 

• Flexibility with different types of distributions: Given the varying nature and physical processes, 

variables involved in MMF may follow different statistical distributions (e.g., LP3, GEV). Because 

the theory of copulas can allow for the separation of marginal distributions and dependence 

structures, the copula-based assessment is not limited to specific types of probabilistic distributions. 

This flexibility is desirable for wider applications of copulas in other MMF assessments. 

• Definition of maximum events: The definition of maximum events represents one of the most 

significant differences to the conventional univariate frequency analysis. To support a meaningful 

statistical analysis, the selection of maximum events must consider their joint occurrence across all 
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dimensions and cannot be done separately for each variable. To demonstrate its sensitivity in MMF 

assessments, three definitions of maximum events in this case study were compared, and relatively 

better performance was observed when using M2. However, because this issue has not been 

extensively studied, whether such a maximum event selection approach can also work for other 

applications is unclear. The most suitable strategy to select and define maximum events for the 

purpose of MMF assessment must be more fully explored. 

• Data availability: Data availability is one of the greatest known challenges in univariate frequency 

analysis. Given the inconsistent data coverage, measurement, and accuracy across multiple variables, 

data availability is an even more critical issue for multivariate frequency analysis. Except for some 

data-rich watersheds and sites, the number of observations is likely insufficient for many potential 

MMF applications. Where data are sparse, one may need to identify suitable ways to leverage 

numeric model outputs to help expand the sample size for more reliable estimates. In other words, 

one will need to find a balance between the bias of numerical models and the bias caused by 

insufficient observations to support multivariate frequency analysis. 

• Challenge of dimensionality: Although copulas have found wide applicability at the bivariate level, 

their application to higher dimensions (≥3) is not straightforward and entails more mathematical 

challenges. For instance, the commonly used Archimedean copulas cannot be directly extended to 

higher dimensions, or they will lead to the same bivariate dependence structures of each pair of 

variables. At higher dimensions, meta-elliptical copulas (including Gaussian and t) or a mixture of 

bivariate copulas through the vine copulas approach (e.g., Vernieuwe et al. 2015) must be used. Data 

requirements will also increase significantly at higher dimensions, adding more challenges to the 

higher-dimension applications. 
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3. COASTAL MMF USE CASE STUDY 

3.1 INTRODUCTION 

This case study used a Bayesian-motivated approach to assess MMF hazards in a coastal setting, 

specifically a site located in a tidal reach of the Delaware River. The flood forcing phenomena was a 

tropical cyclone (hurricane), and the flood mechanisms involved in the analysis included hurricane-

induced surge, precipitation, and river flow. The research objective was to develop a hazard curve for the 

river discharge flood severity metric accounting for the effects of river base flow, hurricane-induced 

surge, tides, and precipitation-induced runoff. This study aims to demonstrate the process of 

implementing the Bayesian-motivated approach to perform a probabilistic hazard assessment that 

accounts for MMFs. Although this is not a predictive modeling application, implementation of the 

Bayesian-motivated approach requires models that allow development of conditional probabilistic 

relationships between involved variables. To achieve this goal, this work combined a series of 

surrogate/statistical and analytical models to model river discharge caused by storm occurrence in a 

coastal area. These simplified models (relative to more robust numerical models) allow for demonstration 

of the Bayesian-motivated approach and are discussed in more detail in Section 3.4. This case study 

should be interpreted as a demonstration of a process rather than a definitive hazard assessment for the 

target location.  

3.2 COASTAL CASE STUDY SCOPE AND SETTING 

This case study focused on probabilistic assessment of MMF hazards from hurricane-induced storm 

surge, tides, and precipitation-induced discharge (rainfall runoff). The case study focused on a site located 

on the Delaware River near Trenton, New Jersey. Figure 3-1 shows the case study location. 

 

Figure 3-1. Case study location.  

Multiple candidate case study regions were considered prior to the selection of the Trenton, New Jersey 

site. A key criterion used in selecting the case study location was the availability of the data needed to 

develop surrogate model components required to implement the framework described in Section 3.3. One 
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of the limiting characteristics was the availability of 15-min stage-discharge measurements, which were 

not available along some tidally influenced rivers near other candidate locations.  

The 15-min stage-discharge information was available near the case study location using USGS gage 

01463500 (USGS 2021). Furthermore, Advanced Circulation (ADCIRC) model surge height simulations 

(i.e., simulations predicting storm surge still-water elevations as a function of hurricane characteristics) 

are readily available for the North Atlantic coast. Specifically, ADCIRC simulation results from the US 

Army Corps of Engineers (USACE) North Atlantic Comprehensive Coastal Study (NACCS) (Nadal-

Caraballo et al. 2015) were obtained from the USACE Coastal Hazards System (USACE 2021). For this 

case study region, the furthest upstream location for which ADCIRC simulation data are available is 

NACCS save point 5373. The save point is approximately 1.5 km downstream of USGS river gage 

01463500. The location of save point 5373 was selected as the target study location for this case study.  

To incorporate the effects of tides, NOAA tide gage 8539993 (NOAA 2021) was the closest gage to the 

study location. However, this tide gage is approximately 2.5 km downstream of the target study location 

(save point 5373). To confirm the consistency in the surge propagation between the locations of tide gage 

8539993 and save point 5373, this study considered NACCS save point 7624, which is close to tide gage 

8539993. The locations of the two save points, NOAA tide gage, and USGS gage are shown in Figure 

3-2. 

 

Figure 3-2. Location of the USGS gage, NOAA tide gage, save point 5373, and save point 7624. 

3.3 METHODOLOGY 

This case study used a Bayesian-motivated approach to generate a multi-mechanism probabilistic flood 

hazard curve using discharge as the flood severity parameter of interest. The Bayesian-motivated model 

developed in this case study is presented as a Bayesian network (BN; an acyclic graphical model). 

Because of its graphical nature, the BN provides a transparent means of presenting the proposed model 

and a convenient method for performing calculations involving the discretized forms of requisite 

integrals. However, the proposed approach does not require the use of BNs, and the fundamental integrals 

(specifically, their discrete counterparts) can be calculated directly. 

The Bayesian-motivated approach in this case study began with understanding physical relationships 

between involved variables and using these relationships to develop the fundamental integrals that will be 

used to calculate exceedance probabilities necessary to develop hazard curves (Section 3.3). The next step 
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involved defining storm parameters and developing models to predict response variables (Section 3.4) as 

a function of storm parameters and other intermediate quantities. After developing predictive models and 

the definition of storm parameters as model input, discretized values of input and predicted variables and 

their corresponding (conditional) probability mass functions (PMFs) were specified (Section 3.4.9). Using 

the PMFs, a hazard curve was generated (Section 3.5). 

Figure 3-3 presents a BN formulation of the model used in this case study. Using the BN as a guide, the 

foundational integral for computing the probability that total river discharge (𝑄𝑡𝑜𝑡𝑎𝑙) exceeds flood 

discharge severity 𝑞 is represented as 

𝑃(𝑄𝑡𝑜𝑡𝑎𝑙 > 𝑞) = ∫ … ∫ 𝑃(𝑄𝑡𝑜𝑡𝑎𝑙 > 𝑞|𝑄{𝜂,𝑅,𝑇}, 𝑄𝑃)

∞

−∞

∞

−∞

 𝑓(𝑄𝑃|𝑄̂𝑃 , 𝜀𝑄𝑃
) 𝑓(𝜀𝑄𝑃

)𝑓(𝑄̂𝑃|𝑃𝐵𝐴)  

 𝑓(𝑃𝐵𝐴|𝑃̂𝐵𝐴, 𝜀𝑃𝐵𝐴
) 𝑓(𝜀𝑃𝐵𝐴

) 𝑓(𝑃̂𝐵𝐴|𝑉𝑤 , 𝜃, 𝑥0, 𝑉𝑓) 𝑓(𝑉𝑤|𝑉𝑤̂ , 𝜀𝑉𝑤
) 𝑓(𝜀𝑉𝑤

) 𝑓(𝑉𝑤̂|∆𝑝) 𝑓(∆𝑝) 𝑓(𝑥0) 

 𝑓(𝑉𝑓) 𝑓(𝜃) 𝑓(𝑅𝑚𝑎𝑥) 𝑓 (𝑄{𝜂,𝑅,𝑇}|𝑄̂{𝜂,𝑅,𝑇}, 𝜀𝑄{𝜂,𝑅,𝑇}
)  𝑓 (𝜀𝑄{𝜂,𝑅,𝑇}

)  𝑓(𝑄̂{𝜂,𝑅,𝑇}|𝜂, 𝑄𝑅 , 𝑇) 𝑓(𝑄𝑅) 

𝑓(𝑇) 𝑓(𝜂|𝜂̂, 𝜀𝜂) 𝑓(𝜀𝜂) 𝑓(𝜂̂|𝑅𝑚𝑎𝑥, 𝜃, 𝑥0, 𝑉𝑓 , ∆𝑝)𝑑Ω , 

(3.1) 

where 

• 𝑄𝑡𝑜𝑡𝑎𝑙: total discharge, accounting for hurricane-induced surge, precipitation-induced runoff, 

concurrent base flow, and tides (cfs), 

• 𝑄𝑅: concurrent river base flow (cfs), 

• 𝑄𝑃: hurricane-induced precipitation discharge (cfs), 

• 𝑄{𝜂,𝑅,𝑇}: discharge caused by surge, river base flow, and tides (cfs), 

• 𝑇: elevation of the tides (ft), 

• 𝑃𝐵𝐴: average basin precipitation (in./day), 

• 𝜂: surge elevation (m), 

• Δ𝑝: the storm’s central pressure deficit (hPa), computed as the difference between a peripheral 

atmospheric pressure of 1,013 hPa and the storm’s central pressure (hPa),  

• 𝑉𝑓: the storm’s forward velocity (speed) (km/h), 

• 𝑅𝑚𝑎𝑥: the storm’s radius to the maximum wind (km), 

• 𝜃: the storms heading (direction) measured in degrees clockwise from north, 

• 𝑥0: the storm’s reference location (e.g., landfall location), and 

• 𝑉𝑤: wind velocity (km/h). 
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Figure 3-3. BN representation of fundamental integral used in case study.  

The “hat” notation indicates quantities predicted by a model. The “𝜀 quantities” refer to model errors with 

subscripts, indicating the model to which they apply. 

The integral in Eq. (3.1) is calculated in discrete form as 

𝑃(𝑄𝑡𝑜𝑡𝑎𝑙 > 𝑞) 

= ∑ … ∑ 𝑃(𝑄𝑡𝑜𝑡𝑎𝑙 > 𝑞|𝑄{𝜂,𝑅,𝑇}, 𝑄𝑃) 𝑝(𝑄𝑃|𝑄̂𝑃 , 𝜀𝑄𝑃
) 𝑝(𝜀𝑄𝑃

) 𝑝(𝑄̂𝑃|𝑃𝐵𝐴)  

 𝑝(𝑃𝐵𝐴|𝑃̂𝐵𝐴, 𝜀𝑃𝐵𝐴
) 𝑝(𝜀𝑃𝐵𝐴

) 𝑝(𝑃̂𝐵𝐴|𝑉𝑤 , 𝜃, 𝑥0, 𝑉𝑓) 𝑝(𝑉𝑤|𝑉𝑤̂ , 𝜀𝑉𝑤
) 𝑝(𝜀𝑉𝑤

) 𝑝(𝑉𝑤̂|∆𝑝) 𝑝(∆𝑝) 𝑝(𝑥0)  

 𝑝(𝑉𝑓) 𝑝(𝜃) 𝑝(𝑅𝑚𝑎𝑥) 𝑝 (𝑄{𝜂,𝑅,𝑇}|𝑄̂{𝜂,𝑅,𝑇}, 𝜀𝑄{𝜂,𝑅,𝑇}
)  𝑝 (𝜀𝑄{𝜂,𝑅,𝑇}

)  𝑝(𝑄̂{𝜂,𝑅,𝑇}|𝜂, 𝑄𝑅 , 𝑇)  

𝑝(𝑄𝑅) 𝑝(𝑇) 𝑝(𝜂|𝜂̂, 𝜀𝜂) 𝑝(𝜀𝜂) 𝑝(𝜂̂|𝑅𝑚𝑎𝑥, 𝜃, 𝑥0, 𝑉𝑓 , ∆𝑝) . 

(3.2) 

Using a Poisson process assumption regarding the occurrence of hurricane events (as is typically 

assumed), the annual rate of exceedance is computed as 

 𝜆𝑄𝑡𝑜𝑡𝑎𝑙>𝑞
= 𝜆𝐻 ∗ 𝑃(𝑄𝑡𝑜𝑡𝑎𝑙 > 𝑞) , (3.3) 

where 𝜆𝐻 is the rate at which hurricanes affect an area, and 𝑃(𝑄𝑡𝑜𝑡𝑎𝑙 > 𝑞) is computed as in Eq. (3.2). 
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3.4 KEY ASSUMPTIONS 

After developing the quantitative expression for the probability of exceedance of the severity measure, the 

next step in the analysis is to calculate the conditional and marginal probability distributions required to 

evaluate the expression shown in Eq. (3.2). The development of these distributions requires evaluation of 

statistical data and use of the predictive models. Five key predictive models were used in this case study. 

These models are shown in Figure 3-4: 

• Surge model: a surrogate model for predicting surge height (𝜂) as a function of hurricane parameters 

(𝑅𝑚𝑎𝑥, 𝑋𝑜, 𝑉𝑓 , 𝜃, Δ𝑝)  

• Wind model: a statistical model for predicting maximum wind velocity (𝑉𝑤) as a function of central 

pressure deficit (Δ𝑝) 

• Precipitation model: a statistical-empirical model for predicting hurricane-induced precipitation 

across the regional watershed as a function of selected hurricane characteristics (i.e., hurricane track 

and a decayed wind velocity) 

• Precipitation-induced discharge model: a statistical model for predicting precipitation-induced 

discharge 

• Surge-, tide-, and river base flow–induced discharge model (also referred to herein as the combined 

discharge model): a statistical model for predicting river discharge caused by surge, tides, and river 

base flow 

These models were used to develop the conditional probability tables (CPTs) associated with the nodes 

highlighted in the BN in Figure 3-5. Additional information about the development of conditional 

probability distributions is provided in the subsections that follow (Section 3.4.1 through Section 3.4.9). 

Once all distributions were defined, the next step in the analysis involved discretization of all variables 

(Section 3.4.9) and the evaluation of the expression in Eq. (3.2). 
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Figure 3-4. Key models used in the case study. 

 

Figure 3-5. Key models used to develop BN representation used in the case study. 

3.4.1 Storm parameters 

In this case study, a hurricane was parameterized using five quantities: 

Surge modelPrecipitation model

Wind model

Wind model

Precipitation model

Precipitation-induced

discharge  model 

Combined discharge 

model 

Surge model

Superposition

Superposition
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• Δ𝑝 = the storm’s central pressure deficit (hPa), computed as the difference between a peripheral 

atmospheric pressure of 1,013 hPa and the storm’s central pressure (hPa), 

• 𝑉𝑓 = the storm’s forward velocity (speed) (km/h), 

• 𝑅𝑚𝑎𝑥 = the storm’s radius to the maximum wind (km), 

• 𝜃 = the storm’s heading (direction) measured in degrees clockwise from north, and 

•  𝑥0 = the storm’s reference location (e.g., landfall location). 

In the BN in Figure 3-3, these quantities are represented by the root (top) nodes. 

Typically, the development of probability distributions for storm parameters requires statistical 

assessment of historical hurricane track data (potentially augmented with synthetic data sources). In this 

study, the distributions suggested by NACCS for the area under study (Nadal-Caraballo et al. 2015) were 

used to define the distributions assigned to storm parameters: distributions 𝑓(∆𝑝), 𝑓(𝑥0), 𝑓(𝑉𝑓), 𝑓(𝜃), 

and 𝑓(𝑅𝑚𝑎𝑥) in Eq. (3.2). Consistent with NACCS, hurricane parameters were treated as statistically 

independent quantities. Table 3-1 shows the distributions and corresponding parameters. NACCS 

considered three sub-regions for the analysis in the North Atlantic region. Distributions and 

corresponding parameters in Table 3-1 are related to Region 2, where the area under study is located. 

Table 3-1. Distributions and corresponding parameters for hurricane parameters. 

No. Hurricane 

parameters 

Distribution Functional form Distribution 

parameters  

1 Δ𝑝 Doubly truncated Weibull 

distribution 

𝑃[∆𝑝 > 𝑥]

=

exp [− (
𝑥
𝑈

)
𝑘

]  − exp [− (
∆𝑝2

𝑈
)

𝑘

]

exp [− (
∆𝑝1

𝑈
)

𝑘

] − exp [− (
∆𝑝2

𝑈
)

𝑘

]

 

 

∆𝑝1 = 25 hpa 

∆𝑝2 = 93 hpa 

𝑈 = 35.77 

𝑘 = 1.41 

2 𝑅𝑚𝑎𝑥 LN distribution 
𝑓(𝑥) =

1

𝑥𝜁√2𝜋
exp [−

1

2
 (

ln(𝑥) − 𝜆

𝜁
)

2

] 

 

𝜆 = 4.215, 𝜁 = 0.45 

3 𝑉𝑓 NOR distribution 
𝑓(𝑥) =

1

𝜎√2𝜋
exp [−

1

2
 (

𝑥 − 𝜇

𝜎
)

2

] 

 

𝜇 = 44.05, 𝜎 = 16.06 

4 𝜃 NOR distribution 
𝑓(𝑥) =

1

𝜎√2𝜋
exp [−

1

2
 (

𝑥 − 𝜇

𝜎
)

2

] 
𝜇 = 16.48, 𝜎 = 36.17 

5 𝑥0 Uniform distribution — — 

3.4.2 Storm surge model 

The storm surge model represents surge height (𝜂) as a function of a surge prediction (𝜂̂) and a prediction 

error term (𝜀𝜂): 

 𝜂 = 𝜂̂ + 𝜀𝜂 . (3.4) 
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This function is used to generate the conditional distribution 𝑝(𝜂|𝜂̂, 𝜀𝜂) shown in Eq. (3.2) (and 

equivalently, the CPT assigned to node 𝜂 in Figure 3-3). Conceptually, Eq. (3.4) specifies that for each 

combination of 𝜂̂ and 𝜀𝜂, 𝜂 is simply a deterministic combination of both quantities. However, when 𝜂̂ 

and 𝜀𝜂 are discretized, a finite number of combinations of the discretized “bins” are associated with 𝜂̂ and 

𝜀𝜂. Letting 𝜂𝑖̂ indicate {𝜂𝑖 ≤ 𝜂̂ < 𝜂𝑖+1} and 𝜀𝜂,𝑗 indicate {𝜀𝜂,𝑗 ≤ 𝜀𝜂 < 𝜀𝜂,𝑗+1}, then 𝑝 (𝜂|𝜂𝑖̂, 𝜀𝜂,𝑗
) 

represents the conditional PMF of 𝜂 given that 𝜂̂ and 𝜀𝜂 are within the ranges {𝜂𝑖 ≤ 𝜂̂ < 𝜂𝑖+1} and 

{𝜀𝜂,𝑗 ≤ 𝜀𝜂 < 𝜀𝜂,𝑗+1}, respectively. To limit the impact of this discretization, this conditional PMF was 

developed using Monte Carlo simulation, as described in Section 3.4.9. This approach was used to 

develop the conditional PMFs associated with all deterministic functions presented in this case study. 

The conditional distribution 𝑝(𝜂̂|𝑅𝑚𝑎𝑥, 𝜃, 𝑥0, 𝑉𝑓 , ∆𝑝) in Eq. (3.2) (and equivalently, the CPT for node 𝜂̂ in 

Figure 3-3) is generated using a surrogate model developed to predict surge height (𝜂̂, m MSL) as a 

function of representative synthetic hurricane track parameters: 

 𝜂̂ = 𝑔(Δ𝑝, 𝑉𝑓 , 𝜃, 𝑅𝑚𝑎𝑥, 𝑥0) , (3.5) 

where all quantities are as defined in Section 3.3.  

In this use case study, a surrogate model using a Gaussian process regression (GPR) (Al Kajbaf and Bensi 

2020; Bass and Bedient 2018; Jia et al. 2016; Jia and Taflanidis 2013) was developed. The regression 

model was trained to emulate the ADCIRC-computed surge values generated by NACCS (Nadal-

Caraballo et al. 2015) for the closest study save point to the target location (save point 5373; see Figure 

3-1). The data required for training and testing the model were obtained from the USACE coastal hazard 

system website (https://chswebtool.erdc.dren.mil/). Alternative predictive models, including neural 

network (NNET) and support vector machine (SVM), were considered and tested; however, the GPR 

model showed the overall best performance. For example, Figure 3-6 shows the surge height predicted 

using these surrogate models versus the simulated ADCIRC surge height for one example of a 70/30 

holdout validation (i.e., 70% of the data are designated as training data and used to “fit” the model, and 

the remaining 30% of the data are withheld for testing the “fitted model” against “unseen” data). Table 

3-2 shows the estimated root mean square error (RMSE) and correlation for these three models for this 

single holdout validation example. Given the better performance of the GPR for the proposed application 

and the commonality of its use in surge surrogate models, the GPR was used for this study.  

https://chswebtool.erdc.dren.mil/
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Figure 3-6. Correlation between ADCIRC-simulated surge height and predicted surge height using GPR, 

NNET, and SVM models. 

Table 3-2. Correlation and RMSE values related to GPR, NNET, and SVM models. 

Error metrics GPR NNET SVM 

Correlation coefficient  

(surrogate versus ADCIRC-simulated surge) 

0.98 0.97 0.83 

RMSE (m) 0.20 0.22 0.56 

 

To provide insights regarding the magnitude of the NACCS ADCIRC–computed surge at the save point, 

Figure 3-7 shows the peak surge height estimated for each of the 1,031 storms in the synthetic tropical 

cyclone storm suite considered in NACCS. Surge was computed for base conditions (i.e., storm surge 

computed on mean sea level without tidal or sea-level rise considerations). 

 

Figure 3-7. NACCS ADCIRC–computed storm surge at the target save point for 1,031 storms. 
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To assess the out-of-sample prediction abilities of the GPR model used to estimate peak storm surge, a 

holdout validation was performed using 50 holdout folds, each consisting of a 70/30 split of randomly 

selected training and testing (holdout) data. For each fold, 70% of the data were designated as training 

data, which was used to fit the model. The remaining 30% of the data were withheld for testing the fitted 

model against unseen data. Figure 3-8 (left) shows a scatterplot of surrogate model and ADCIRC 

simulations for the out-of-sample predictions across all 50 holdout sets. Figure 3-8 (right) shows a 

histogram of the computed correlation coefficient across the 50 folds. The correlation coefficients vary 

from approximately 0.96 to 0.99. 

 

Figure 3-8. (left) Scatterplot of surrogate and numerical (ADCIRC) model predictions related to surge height 

(m) for the out-of-sample predictions for the 50 holdout sets, and (right) histogram of computed 

correlation coefficients across the 50 holdout sets. 

Figure 3-9 (left) presents a scatterplot of computed out-of-sample prediction errors (ADCIRC estimate 

minus surrogate model prediction), and Figure 3-9 (right) shows the histogram of the computed RMSE 

across the 50 folds. The RMSE varied between 0.14 and 0.22 m across the 50 folds, and the mean RMSE 

was 0.16 m. The mean RMSE was used in characterizing the distribution of the model error term used in 

the analysis. The overall bias (mean error) was small (ranging between −0.02 and 0.02 m). However, a 

trend is observable in Figure 3-9 (left), with larger ADCIRC-estimated surges being associated with a 

larger (positive) error, suggesting the surrogate model may under-predict larger surge values. Although 

not addressed in this case study, modification of the standard deviation of the error term in the BN model 

to account for larger errors with increasing surge height is identified as an area for future study. 
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Figure 3-9. (left) Scatterplot of computed out-of-sample prediction error and numerical (ADCIRC) model 

predictions for across the 50 holdout sets, and (right) histogram of computed RMSE values 

across the 50 holdout sets. 

Following the assessment of model performance using the holdout validation approach, all available data 

were used to train a surrogate model used for predictions. To visualize the surrogate model used in this 

case study, Figure 3-10 shows the surrogate model–predicted partial-variable response functions. That is, 

the figure shows the predicted surge values when varying one variable (on-diagonal plots) or two 

variables (off-diagonal plots) while holding other variables at representative values. The representative 

values are Δ𝑝 = −55.7, 𝑉𝑓 = 40.1, 𝜃 = −4.1, 𝑅𝑚𝑎𝑥 = 68.9, 𝑥0,𝑙𝑎𝑡 = −71.3, and 𝑥0.𝑙𝑜𝑛 = 40.8. The surrogate 

model trained on the full data set was used to make the predictions needed to specify the distribution (and, 

equivalently, to generate CPTs for node 𝜂̂ in Figure 3-3) by assuming that the model prediction is a 

deterministic function of the hurricane parameters (see Eq. (3.5)). 

The marginal distribution 𝑝(𝜀𝜂) in Eq. (3.2) (or equivalently, the marginal probability table assigned to 

node 𝜀𝜂) is generated by assuming 𝜀𝜂 is equal to the sum of the surrogate model error (𝜀𝜂,𝑆) and the error 

associated with the ADCIRC simulations (𝜀𝜂,𝐴): 

 𝜀𝜂 = 𝜀𝜂,𝑆 + 𝜀𝜂,𝐴 , (3.6) 

where 𝜀𝜂,𝑆 is normally distributed with a mean of zero and standard deviation equal to the mean RMSE 

from surrogate model testing, and 𝜀𝜂,𝐴 is assumed to be normally distributed with parameters as defined 

in NACCS (Nadal-Caraballo et al. 2015); i.e., mean of zero and standard deviation equal to 0.48 m. 
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Figure 3-10. Surrogate model–predicted partial-variable response functions. 
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3.4.3 Wind velocity model 

The wind velocity model represents wind velocity (𝑉𝑤) as a function of a statistical model prediction and 

a prediction error term (𝜀𝑉𝑓
): 

 𝑉𝑤 = 𝑉̂𝑤 + 𝜀𝑉𝑤
 . (3.7) 

This function is used to define the conditional distribution of 𝑉𝑤 in Eq. (3.2) (and equivalently, CPT 

assigned to node 𝑉𝑤 as a function of 𝑉̂𝑤 and 𝜀𝑉𝑤
 in Figure 3-3). The conditional distribution for 𝑉̂𝑤 is 

generated using a statistical model that relates wind velocity and central pressure deficit. The statistical 

equation introduced in NACCS was used to predict maximum wind velocity (km/h) as a function of 

central pressure deficit (hPa) (Nadal-Caraballo et al. 2015): 

 𝑉̂𝑤 = 42.4807 − 0.0084∆𝑝2 + 2.9752∆𝑝 . (3.8) 

Figure 3-11 shows plotted North American Hurricane Database (NOAA 2018) data and the prediction 

equation developed in NACCS (Nadal-Caraballo et al. 2015) to estimate wind velocity as a function of 

central pressure deficit.  

The marginal distribution 𝑝(𝜀𝑉𝑤
) in Eq. (3.2) (and equivalently, the marginal probability table for node 

𝜀𝑉𝑤
 in Figure 3-3) is generated by assuming that 𝜀𝑉𝑤

 is normally distributed with zero mean and standard 

deviation of 18.66 km/h, consistent with the standard error for the wind velocity prediction equation 

documented in NACCS (Nadal-Caraballo et al. 2015). 

 

Figure 3-11. Statistical wind velocity prediction model used in this study and plotted 

North American Hurricane Database (HURDAT2) data. 

3.4.4 Precipitation model 

The precipitation model predicts basin-wide average precipitation (𝑃𝐵𝐴) as a function of a statistical 

model prediction and a prediction error term (𝜀𝑃𝐵𝐴
): 
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𝑃𝐵𝐴 = 𝑃̂𝐵𝐴 + 𝜀𝑃𝐵𝐴
 . (3.9) 

This function is used to generate the conditional probability distribution 𝑝(𝑃𝐵𝐴|𝑃̂𝐵𝐴, 𝜀𝑃𝐵𝐴
) in Eq. (3.2) 

(and equivalently, to generate the CPT assigned to node 𝑃𝐵𝐴 in Figure 3-3). The conditional distribution 

𝑝(𝑃̂𝐵𝐴|𝑉𝑤 , 𝜃, 𝑥0, 𝑉𝑓) (or equivalently, the CPT for node 𝑃̂𝐵𝐴 in Figure 3-3) is generated using a statistical 

model that relates a regional rain field and hurricane track parameters using a multi-part model. 

The Tropical Rainfall Measuring Mission rainfall rates (TRR) model suggested by Tuleya et al. (2007) 

was leveraged, in which the rainfall rate at a point location is estimated as a function of maximum wind 

speed of the storm and the distance from the hurricane center. The TRR model represents rainfall rate 

(𝑅𝑅; in./day) as a function of the radial distance from the center of the storm and the maximum wind 

speed using the expression 

𝑅𝑅(𝑟, 𝑉𝑤) = {
𝑇0 + (𝑇𝑚 − 𝑇0) (

𝑟

𝑟𝑚
) , 𝑟 < 𝑟𝑚

𝑇𝑚 exp [−
𝑟−𝑟𝑚

𝑟𝑒
] , 𝑟 ≥ 𝑟𝑚

 , (3.10) 

where 𝑟 is the radius from hurricane center (km) to the point of interest (i.e., the point at which the 

rainfall rate will be predicted). The remaining quantities in Eq. (3.10) are coefficients defined as 

𝑇0 = 𝑎1 + 𝑏1𝑈 , (3.11) 

𝑇𝑚 = 𝑎2 + 𝑏2𝑈 , (3.12) 

𝑟𝑚 = 𝑎3 + 𝑏3𝑈 , (3.13) 

𝑟𝑒 = 𝑎4 + 𝑏4𝑈 , (3.14) 

where 𝑟𝑚  is representative of the radial extent of the inner core rain rate, and 𝑟𝑒 is a measure of the radial 

extent of tropical cyclone rainfall. 𝑇0 is representative of rain rate at 𝑟 = 0, and 𝑇𝑚 is representative of 

maximum rain rate at 𝑟 = 𝑟𝑚. 𝑈 is the normalized wind velocity (kn) described by 

𝑈 = 1 + (𝑉𝑤 − 35)/33 , (3.15) 

where 𝑉𝑤 is the maximum windspeed (kn). The coefficients 𝑎1 through 𝑎4 and 𝑏1 through 𝑏4 were 

obtained by Tuleya et al. (2007) using Tropical Rainfall Measuring Mission rainfall profiles. Table 3-3 

shows bias-corrected coefficients using rain gage data (Marks et al. 2002). 

Table 3-3. Bias-corrected constants for the TRR model. 

𝑎1 = −1.1 in.day−1 𝑏1 = 3.96 in.day−1 

𝑎2 = −1.6 in.day−1 𝑏2 = 4.8 in.day−1 

𝑎3 = 64.5 km 𝑏3 = −13.0 km 

𝑎4 = 150 km 𝑏4 = −16.0 km 

 

Figure 3-12 shows the variation of rainfall rate (𝑅𝑅) with radial distance from the storm center using the 

TRR model (Tuleya et al. 2007). As shown in Eq. (3.10) and Figure 3-12, when 𝑟 is smaller than 𝑟𝑚, 𝑅𝑅 

increases linearly with radial distance and then decreases exponentially for 𝑟 values higher than 𝑟𝑚. In 

Eqs. (3.11)–(3.14), 𝑈 is the normalized wind speed, with a maximum value of 115 kn. The RMSE of the 



 

3-15 

model fitted to Tropical Rainfall Measuring Mission rainfall rates using Eqs. (3.11)–(3.14) was estimated 

by Tuleya et al. (2007) as 0.28 in.day−1. 

 

Figure 3-12. Decay of rainfall rate with radial distance using a TRR model (Tuleya et al. 2007). 

A TRR model was used to predict rainfall at discrete gridded points across the watershed upstream of the 

case study location. The grid is shown in Figure 3-13. It consists of 1,454 grid points on a 4 × 4 km grid. 

To estimate storm rainfall, a discretized hurricane track containing information about the location of the 

hurricane at 1 h time steps after landfall was created. These spatial and temporal track parameters were 

calculated as a function of hurricane speed (forward velocity), landfall location, and heading. Then, the 

radial rain field was computed using the aforementioned TRR model. However, the TRR model provides 

rainfall rates per day, whereas the basin-wide rain field was estimated at 1 h time steps. Therefore, daily 

point rainfall rates produced by the model were scaled (by a factor of 24) to produce rates of inches per 

hour. 
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Figure 3-13. Gridded points in the watershed upstream of case study location.  

Because maximum wind velocity decays after landfall, and to better capture spatial-temporal changes in 

precipitation rates, a wind decay model was incorporated into the hurricane-induced precipitation model. 

The wind decay model used in this study was suggested by Kaplan and DeMaria (1995; 2011) and is 

represented by 

  𝑉(𝑡) = 𝑉𝑏 + (𝑅𝑉0 − 𝑉𝑏)𝑒−𝛼𝑡 , (3.16) 

where 𝑉(𝑡) is the wind velocity (kn) at time 𝑡 after landfall, and 𝑉𝑏 and 𝛼 are estimated parameters. 𝑅 is a 

reduction factor related to increased roughness of the land surface, and 𝑉0 is the maximum wind speed at 

landfall. The wind velocity output of Eq. (3.16) was converted from knots to kilometers per hour for 

subsequent calculations. Table 3-4 shows the RMSE (kn) and coefficients of wind decay model for the 

area under study suggested by (Kaplan and Demaria 2001). Figure 3-14 presents two examples of 

hurricane track wind decay using the model in Eq. (3.16), with wind speeds presented in kilometers per 

hour. 

Table 3-4. Wind decay model coefficients for the area under study. 

RMSE (kn) R 𝛼 (h−1) 𝑉𝑏 (kn) 

11.4 0.9 0.187 29.6 
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Figure 3-14. Examples of hurricane track wind decay; color key represents wind speeds (km/h). 

To illustrate the implementation of the precipitation prediction model, Figure 3-15 shows a synthetic 

hurricane track along with the rain field over the watershed at six example discrete time steps. The total 

rainfall over the watershed during the 24 h following landfall was computed as the sum of the hourly 

rainfall quantities at each point. Figure 3-16 shows the total 24 h precipitation for the track shown in 

Figure 3-15. Then, the basin average precipitation (𝑃̂𝐵𝐴) was computed by averaging over all grid points. 

 

Figure 3-15. Hurricane-induced precipitation in the upstream area for an example storm track (red) at 

discrete time steps after storm landfall; the red star represents storm center at specific points after 

landfall; the color key represents rainfall (in./h). 
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Figure 3-16. Total daily rainfall for the upstream watershed for an example storm track (red); 

the color key represents rainfall (in./day). 

The model error term (𝜀𝑃𝐵𝐴
) (see Eq. (3.9)) is assumed to be normally distributed with mean zero and 

standard deviation equal to the RMSE of the TRR model. Consideration of a more sophisticated approach 

to defining this error, accounting for error in precipitation and wind decay models, is identified as a 

potential area for future research. 

3.4.5 Precipitation-induced discharge model 

The precipitation-induced discharge model represents estimates in river discharge caused by upstream 

hurricane-induced precipitation. It takes the form 

 𝑄𝑃 = 𝑄̂𝑃 + 𝜀𝑄𝑃
 , (3.17) 

where 𝑄̂𝑃 is the predicted change in river discharge (cfs) caused by precipitation, and 𝜀𝑃 is a prediction 

error term. This function is used to generate the distribution 𝑝(𝑄𝑃|𝑄̂𝑃 , 𝜀𝑄𝑃
) in Eq. (3.2) (or equivalently, 

the CPT assigned to node 𝑄𝑃 in Figure 3-3). 𝑄̂𝑃 is predicted as a function of the upstream basin-wide 

average precipitation (𝑃𝐵𝐴): 

 𝑄̂𝑃 = 𝑔(𝑃𝐵𝐴) . (3.18) 

The predictive model in Eq. (3.18) was developed using daily precipitation and runoff data extracted from 

RAPID (David et al. 2011) and VIC (Oubeidillah et al. 2013) from 1980 to 2015. Figure 3-17 shows the 

time series of runoff (top panel) and precipitation (bottom panel) for the noted time period, as well as the 

time series filtered to include only the portions of the time series during hurricane season (orange). This 

hurricane season–filtered data set was used in the surrogate model development. Figure 3-18 shows the 

scatterplot of runoff and basin-wide average precipitation for “all data” and hurricane-season data. In 
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Figure 3-17 and Figure 3-18, the unit of precipitation is millimeters (consistent with original model 

results), but to estimate runoff in cubic feet per second in subsequent calculations, precipitation was 

converted to feet. 

 

Figure 3-17. Time series of (top) runoff and (bottom) basin-wide average daily precipitation. 

 

Figure 3-18. Scatterplot of runoff and basin-wide average daily precipitation.  

Different predictive models, including generalized linear models and polynomial models, were fitted to 

data and tested for their performance. The second-degree polynomial model showed the best overall 

performance. This model takes the form 

 𝑄̂𝑃 = 𝛼1 + 𝛼2𝑃𝐵𝐴 + 𝛼3𝑃𝐵𝐴
2 . (3.19) 

The linear and second-degree polynomial regression lines are plotted along with the input data in Figure 

3-19. The second-order model has a relatively high adjusted 𝑅-squared value (over 0.95) and an RMSE of 

2,970 cfs when computed as a measure of fit. 
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Figure 3-19. Scatterplot of runoff and basin-wide average daily precipitation superimposed with linear and 

polynomial regression lines.  

A holdout validation was performed to assess the variation in RMSE (cfs) and the correlation coefficient 

(𝑅) between predicted and observed values using 50 holdout folds consisting of a 70/30 split of randomly 

selected training and testing data. Figure 3-20 (left) shows a scatterplot of surrogate and RAPID-VIC 

predictions for the out-of-sample predictions across all 50 holdout sets. Figure 3-20 (right) shows a 

histogram of the computed correlation coefficient across the 50 folds. The correlation coefficients vary 

from approximately 0.97 to 0.98. 

 

Figure 3-20. (left) Scatterplot of surrogate and numerical (RAPID-VIC) model predictions related to 

discharge (cfs) for the out-of-sample predictions for the 50 holdout sets, and (right) histogram of 

computed correlation coefficients across the 50 holdout sets. 
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Figure 3-21 (left) presents a scatterplot of computed out-of-sample prediction errors (RAPID-VIC 

estimate minus surrogate model prediction), and Figure 3-21 (right) shows the histogram of the calculated 

RMSEs across the 50 folds. The RMSE varied between approximately 2,300 and 3,100 cfs across the 50 

folds, and the mean RMSE was 2,707 cfs. The mean RMSE was used in characterizing the distribution of 

the model error term used in the analysis. The overall bias (mean error) was relatively small (ranging 

between approximately −163 and 198 cfs). 

 

Figure 3-21. (left) Scatterplot of computed out-of-sample prediction error and numerical (RAPID-VIC) 

model predictions for across the 50 holdout sets, and (right) histogram of computed 

RMSE values across the 50 holdout sets. 

3.4.6 Surge-, tide-, and river base flow–induced discharge model (combined discharge model) 

The surge-, tide-, and river base flow–induced (combined) discharge model was developed to predict river 

discharge caused by the simultaneous occurrence of storm surge, tides, and river base flow. It takes the 

form 

 𝑄{𝜂,𝑅,𝑇} = 𝑄̂{𝜂,𝑅,𝑇} + 𝜀𝑄{𝜂,𝑅,𝑇}
 , (3.20) 

where 𝑄̂{𝜂,𝑅,𝑇} is the (equivalent) total discharge (cfs) caused by surge, river base flow, and tides. 𝜀𝑄𝑆_𝑅_𝑇
 

is a prediction error term. To estimate 𝑄̂{𝜂,𝑅,𝑇} , river base flow was converted to equivalent river depth, 

and surge and tides were added to river base flow–equivalent depth to estimate total water level caused by 

river surge, tides, and base flow. In the next step, this total water level was converted to discharge using 

stage-discharge relationship. The predictive model takes the form 

 𝑄̂{𝜂,𝑅,𝑇} = 𝑔(𝜂, 𝑇, 𝑄𝑅) , (3.21) 

where 𝑔(𝜂, 𝑇, 𝑄𝑅) is a function that “maps” surge, river base flow–equivalent depth, and tide water levels, 

respectively, to an equivalent discharge. This mapping between water level and an equivalent discharge 

value was done using a stage-discharge relationship developed for a gage located near the case study 

location. In the area under study, the error caused by nonlinear interaction between tides and storm surge 

is negligible (Nadal-Caraballo et al. 2015). Therefore, the simple superposition of tides and surges was 

judged to generate reasonable results. Equation𝑄̂{𝜂,𝑅,𝑇} = 𝑔(𝜂, 𝑇, 𝑄𝑅) , (3.21) facilitates specification of 
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𝑝(𝑄̂{𝜂,𝑅,𝑇}|𝜂, 𝑄𝑅 , 𝑇) in Eq. (3.2) (and equivalently, definition of the CPT of node 𝑄̂{𝜂,𝑅,𝑇} in Figure 3-3). 

Equation (3.20) also facilitates specification of 𝑝 (𝑄{𝜂,𝑅,𝑇}|𝑄̂{𝜂,𝑅,𝑇}, 𝜀𝑄{𝜂,𝑅,𝑇}
) in Eq. (3.2) (and 

equivalently, definition of the CPT of node 𝑄{𝜂,𝑅,𝑇} in Figure 3-3). Data used in developing the stage-

discharge relationship were extracted from USGS 15-min stage-discharge data for the case study location 

using gage 01463500 located on the Delaware River near Trenton, New Jersey. The gage location is 

shown in Figure 3-2. Stage-discharge information was available for 14 years, from 2007 to 2020. The 

time series of stage and discharge, as well as the scatter plot relating both quantities, are shown in Figure 

3-22. 

 

Figure 3-22. (left) Time series of stage and discharge and (right) a scatterplot of surge and discharge. 

Given the observed relationship, a simple polynomial model was fitted to the quantities. First- through 

fourth-order polynomials were fitted to the data, and the resulting functions are shown in Figure 3-23. 

 

Figure 3-23. Scatterplot of stage and discharge with fitted polynomial models of varying degrees. 

The third-order polynomial was selected as the predictive model. This model takes the form 

 𝑄̂{𝜂,𝑅,𝑇} = 𝛼1 + 𝛼2ℎ + 𝛼3ℎ2 + 𝛼4ℎ3 , (3.22) 



 

3-23 

where ℎ is the sum of the river base flow–equivalent stage, tides, and surge. This model has a high 

adjusted 𝑅-squared value (nearly 1) and an RMSE of 465 cfs. However, for several points shown in 

Figure 3-23, the model did not perform well. These points are highlighted in red in Figure 3-24. As can be 

seen, a limited number of poor-fit points are related to two distinct segments of the overall time series 

(Figure 3-24, right). 

 

Figure 3-24. (left) Scatterplot of recorded stage and discharge and (right) the recorded time series; 

poor-fitting points are highlighted in red. 

A holdout validation was performed to assess the variation in RMSE (cfs) and the correlation coefficient 

(𝑅) between predicted and observed values using 50 holdout folds consisting of a 70/30 split of randomly 

selected training and testing data. The boxplots of the computed RMSE and 𝑅 values are shown in Figure 

3-25. 

 

Figure 3-25. Boxplots of (left) RMSE and (right) the correlation coefficient (R) between predicted and 

observed values for holdout validation. 

To develop the marginal distribution for river base flow, 𝑓(𝑄𝑅) in Eq. (3.2) (or equivalently, the 

probability table assigned to node 𝑄𝑅 in Figure 3-5), a statistical analysis was performed using discharge 

data available for gage 01463500 located near the case study region (see Figure 3-1). First, the portion of 

the time series of relevance to the hurricane season was extracted. Then, to capture a “hurricane-

independent” flow, portions of the hurricane record corresponding to dates in which hurricane events 

were expected to be contributing to river discharge were removed. Then, 5% of the overall time series 

was randomly selected to approximate a random sample of discharges; then, a series of candidate 
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distributions was fitted to the data set. Figure 3-26 (left) shows the normalized frequency histogram of the 

selected data set along with PDFs estimated for candidate distributions, and Figure 3-26 (right) shows the 

empirical CDF for the selected data set along with CDFs estimated for candidate distributions. Table 3-5 

shows the estimated AIC and BIC values for the candidate distributions. Ultimately, based on the 

estimated AIC and BIC and judgment, the LN distribution was selected for modeling the distribution of 

river base flow (Figure 3-27). 

 

Figure 3-26. (left) Normalized frequency histogram of the selected data set along with PDFs fitted for 

candidate distributions, and (right) empirical CDF for the selected data set along with 

CDFs fitted for candidate distributions. 

 

Figure 3-27. (left) Normalized frequency histogram of the selected data set along with LN PDF, and 

(right) empirical CDF for the selected data set along with LN CDF. 

Table 3-5. AIC and BIC values estimated for candidate distributions for base flow. 

Distribution name AIC BIC 

GPD 6194 6202 

Weibull 6344 6352 

NOR 6663  6671 

LN 6219 6226 

GM 28108 28119 

Exponential 6365 6368  
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To include the effects of tides in the analysis (shown as 𝑇 in Figure 3-3), predicted tidal elevations from 

the National Oceanic and Atmospheric Administration (NOAA) water level station located at station 

8539993 (Marine Terminal Park, Trenton, New Jersey) were used. Using these data, positive and negative 

tidal elevations were separated, and empirical CDFs of high (positive) and low (negative) tides were 

generated. The empirical CDFs were used to generate conditional distributions for water level, given that 

peak surge occurs during high- and low-tide time periods. A 0.5 probability of peak surge occurring at 

high tide and at low tide were assumed. That is, 𝑃(𝑇 =  𝑡𝑖) = 𝑃(𝑇 =  𝑡𝑖|𝑙𝑜𝑤)𝑃(𝑙𝑜𝑤) +
𝑃(𝑇 =  𝑡𝑖|ℎ𝑖𝑔ℎ)𝑃(ℎ𝑖𝑔ℎ). Figure 3-28 shows the empirical CDF and PMF for high and low tides. 

Although the two empirical CDFs were used to generate the conditional PMFs of tide, alternative 

approaches could be used, including fitting of nonparametric kernel distributions or a multimodal 

parametric distribution. 

 

Figure 3-28. Empirical (left) CDF and (right) PMF related to high and low tides. 

3.4.7 Calculation of total discharge 

Total equivalent discharge caused by tides, river base flow, storm surge, and storm-induced precipitation 

was modeled as the simple superposition of the precipitation-induced discharge and surge–tide–river base 

flow–equivalent discharge: 

𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄{𝜂,𝑅,𝑇} + 𝑄𝑃 (3.23) 

This simple superposition expression is used to generate the conditional distribution 

𝑝(𝑄𝑡𝑜𝑡𝑎𝑙|𝑄{𝜂,𝑅,𝑇}, 𝑄𝑃) (and equivalently, conditional probabilities for node 𝑄𝑡𝑜𝑡𝑎𝑙 shown in the BN in 

Figure 3-3), which facilitates the calculation of 𝑝(𝑄𝑡𝑜𝑡𝑎𝑙 > 𝑞|𝑄{𝜂,𝑅,𝑇}, 𝑄𝑃). 

3.4.8 Model limitations 

This study used a simplified approach that did not account for the complex interactions of physical 

processes, but which enabled the illustration of the overall Bayesian modeling process. This case study 

used a strategy in which the sum of river base flow–equivalent stage, tide, and surge were used to 

generate a water level, and then converted that water level to an equivalent discharge. This discharge was 

then superimposed with the precipitation-induced discharge to generate a total discharge. In addition to 

the impacts of “simple superposition,” errors were also introduced by the locations of the gages for which 

data were collected. “Time lags” occurred between the occurrence of peak surge at a location and the 
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timing of peak discharge. This study did not account for the differences in timing and instead assumed 

that the peaks temporally align, which creates a conservative bias in the model.  

Superimposing values at the target study location was assumed to be possible. As shown in Figure 3-2, 

the location of the USGS gage used for developing stage-discharge relationship, the location of save point 

5373 used for simulating surge height, and the location of the NOAA tide gage do not coincide. The 

location of the USGS gage is 1.5 km upstream of save point 5373. This gage is also located upstream of 

rock riffles that generally prevent tides from propagating up to the gage station, except in the case of large 

surges and king tides. Save point 5373 is located downstream of these rock riffles and is affected by tides. 

Figure 3-29 shows the location of the rock riffles, the USGS gage, and save point 5373. To incorporate 

the river base flow and for applicability of the stage-discharge relationship developed for the USGS gage 

location, river characteristics that contribute to the development of the stage-discharge relationship were 

assumed to be almost unchanged along the 1.5 km distance between the USGS gage and save point 5373. 

Figure 3-29 shows that the river cross-section between the USGS gage and save point 5373 does not 

change noticeably.  

 

Figure 3-29. The location of USGS gage, rock riffles and save point 5373. 

As shown in Figure 3-30, the location of the NOAA tide gage is 2.5 km downstream of save point 5373. 

To analyze how this distance can affect the surge height and propagation of the tides toward the upstream 

save point 5373, an additional save point 7624 was considered, which is close to tide gage 8539993. 

Figure 3-31 shows the ADCIRC-simulated surge height for these two save points across the same storms. 

The analysis of the surge height at save points 5373 and 7624 showed that similar storms generated 

similar surge heights at these two points. Considering the similarity between surge heights in these two 

save points, the tidal levels observed at the location of save point 7624 were added to the surge height 

simulated at save point 5373 upstream of the tide gage.  
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Figure 3-30. Location of save points 5373 and 7624 and the NOAA tide gage. 

 

Figure 3-31. ADCIRC-simulated surge height (m) for save points 7624 and 5373. 
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3.4.9 Discretization of distributions 

Consistent with the implementation of the joint probability method in general, Eq. (3.2) (and the BN) 

requires the discretization of all modeled random variables. Table 3-6 shows discretized values related to 

constitute random variables.  

Table 3-6. Discretized values for the parameters required in the Bayesian formulation. 

No. Variable Discretized values 

1 𝑥0 (33.16417, –79.2011), (33.94843,–77.9277), (34.93409,–76.2995), (35.8801,–75.5935), 

(37.19846,–75.8545), (37.92462, –75.4296), (38.78565, –75.0918), (39.68712,–

74.1428), (40.92737, –73.7382), (41.39125, –71.4794), (41.67301, –69.9293), 

(42.08063, –70.1512), (42.60478, –70.6388), (43.75627,–69.982), (44.47684, –68.1531) 

2 Δ𝑝 (hpa) 10, 23.83,37.66, 51.50, 65.33, 79.16 

3 𝑅𝑚𝑎𝑥 (km) 0, 50, 87.50, 125, 162.50, 200 

4 𝑉𝑓 (km.h−1) 0, 20, 35, 50, 65, 80 

5 𝜃 (°) –60, –40,–20, 0, 20 

6 𝑄𝑅 (cfs) 20 values interpolated between 0 and 100,000 at an interval of 5,000 cfs 

7 𝑇 (ft) –4.763, –4.53, –4.291, –4.05, –3.810, –3.570, –3.340, –3.110, –2.860, –2.620, –2.380, 

–2.14, –1.90, –1.670, –1.430, –1.190, –0.950, –0.710, –0.470, –0.230, 0.310, 0.620, 

0.930, 1.240, 1.550, 1.860, 2.170, 2.480, 2.790, 3.10, 3.410, 3.72, 4.030, 4.34, 4.65, 4.96, 

5.27, 5.581, 5.891 

8 𝜂 (m)  40 values interpolated between 0 and 6 at an interval of 0.15 m 

9 𝑃𝐵𝐴 (in.day−1) 15 values interpolated between 0 and 3 at an interval of 0.2 in./day–1 

10 𝑄{𝜂,𝑅,𝑇} (cfs) 80 values interpolated between 0 and 950,000 cfs at an interval of 11,875 cfs 

11 𝑄𝑃 (cfs)  80 values interpolated between 0 and 260,000 at an interval of 3,250 cfs 

12 𝑄𝑡𝑜𝑡𝑎𝑙  (cfs) 300 values interpolated between 0 and 1,225,500 at an interval of 4,085 cfs 

Note: The discretized values presented in row 2 to 12 provide the lower edge (value) of each bin. The values in row 1 provide 

the landfall location. 

 

To reduce the impact of discretization errors, a Monte Carlo simulation was used in the generation of the 

CPTs in the BN, which was used to evaluate the expression shown in Eq. (3.2). Although this simulation 

strategy was used in the context of the BNs, such an approach can be used more generally to reduce 

discretization errors in the implementation of Bayesian-motivated approaches requiring discretization of 

the parameter space. Figure 3-32 illustrates the Monte Carlo simulation approach. Under this approach, to 

generate the CPT for a child node, a Monte Carlo simulation was performed for each combination of the 

discrete states of its parent nodes, and a conditional distribution was computed and assigned to the child 

node. For example, in Figure 3-32, a combination of the bins colored in green, purple, orange, and pink 

represent one combination of the states of the parents to node 𝜂 (excluding landfall location). 𝑁𝑠𝑖𝑚 

simulated values were generated by taking random draws from within the four colored bins, resulting in 

𝑁𝑠𝑖𝑚 combinations of the hurricane parameters. The surge height was estimated for each of these 𝑁𝑠𝑖𝑚 

combinations of hurricane parameters using the surrogate mode. Then, these 𝑁𝑠𝑖𝑚 surge values were 

“binned” into the state intervals for node 𝜂, and the result was used to compute the discrete CPT assigned 

to node 𝜂 for the combination of parent nodes. The process was repeated for all combinations of parent 

nodes, and the process was executed for all nodes in the BN. 
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Figure 3-32. Illustration of Monte Carlo simulation approach for generating CPTs. 

3.5 RESULTS 

The capabilities of the BNs were used to “integrate over” (sum over) all nodes shown in the BN in Figure 

3-3. The calculation was repeated to solve the discrete form of the integral in Eq. (3.1) for a range of 

value of 𝑄𝑡𝑜𝑡𝑎𝑙. The result was used to generate a hazard curve. For the assumptions described, the 

resulting illustrative hazard curve is shown in Figure 3-33. To generate this curve, the annual hurricane 

occurrence rate was assumed to be 0.18 storms per year for the area under study (Nadal-Caraballo et al. 

2015). 
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Figure 3-33. Total discharge hazard curve (presented for illustrative purposes). 

3.6 MODEL PERFORMANCE ASSESSMENT 

The last step in this study included a semi-qualitative evaluation to assess the performance of the 

Bayesian-motivated model against historical events to ensure that the results were reasonable. As noted 

previously, the goal of this study was to demonstrate the process of using a Bayesian-motivated approach 

while using a series of simplified empirical, statistical, and surrogate process models. An actual 

application of the Bayesian-motivated approach would likely replace these simplified models with more 

robust numerical or analytical models. Nevertheless, an initial performance assessment of the compilation 

of models used in the case study was performed. The Bayesian-motivated model is intended for 

probabilistic hazard assessment rather than as a predictive model. Therefore, this performance assessment 

should not be interpreted as a formal model validation study. 

The model was assessed by leveraging the capabilities of the BN to facilitate information updating. 

“Evidence” was entered into nodes within the BN (i.e., the states of certain nodes were set as known), and 

the posterior distributions were extracted and used in the performance assessment. Specifically, by 

specifying storm parameters, river base flow, and tides associated with observed events, evidence was 

introduced. Then, the resulting posterior distribution of total discharge was compared with the peak 

discharge levels observed at the gage 01463500 location on the Delaware River near Trenton, New 

Jersey. As noted previously, the USGS gage is located 1.5 km upstream of the target location with 

intervening rock riffles that limit (but do not prevent) surges and tides from propagating from the study 

location (save point 5373) to the location of the river gage. Furthermore, the assumption was made that 

peak surge and discharge temporally coincide. Therefore, the BN model was expected to produce 

consistently higher discharge values than observed at the river gage for historical storms.  

Considering the availability of storm data (especially Rmax data, which were only available after 2005 at 

the time this case study was developed), a limited number of the historical storms occurring in the case 

study area was available for the performance assessment. Figure 3-34 through Figure 3-36 show the 

observed storm tracks of three storms affecting the case study region. These figures also include the 
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synthetic storm tracked modeled in this study. Table 3-7 shows the corresponding representative storm 

parameters as well as measured discharge. The representative values are the values of the storm 

parameters specified in NOAA IBTrACS (International Best Track Archive for Climate Stewardship) 

database (https://www.ncdc.noaa.gov/ibtracs/) taken at the point before landfall. Figure 3-37 through 

Figure 3-39 also show the locations at which the representative values were taken. For each storm, these 

storm parameters were entered as evidence for the corresponding nodes in the BN. 

Assumed river base flow values are shown in Table 3-7 (column labeled “QR”). These values were 

extracted from the gage record for gage 01463500 by investigating 15-min stage values and selecting a 

base flow value prior to the storm affecting the area (e.g., one day prior to storm landfall).  

Tidal values were extracted from the record for NOAA tide station 8539993 (Marine Terminal Park, 

Trenton, New Jersey) by finding the tide level corresponding to the time of the observed peak water level 

at gage 01463500. Tide values at the time of peak surge are provided in the column labeled “Tide at peak 

WL.” When the time of peak water level occurred for an extend period of time (e.g., 1 h or more), a 

representative “midpoint” tide value was selected from the time period. For each storm, the river base 

flow and tide values were entered in the corresponding nodes in the BN. Model output was highly 

sensitive to the assumed tide values, and minor changes substantially changed the computed total 

discharge results.  

For each storm, the poster distributions of total discharge were computed using the BN. In Figure 3-41 

and Figure 3-42, blue bar plots represent the posterior distribution of modeled discharge values for each 

storm scenario. In addition to providing the PMF of combined discharge for all three storms, Table 3-7 

also provides the “modal bin” of the distribution (i.e., the bin with the highest probability mass in the 

PMF). As can be seen, the bins associated with the highest probability for all three storms differed from 

the USGS data. This is partially because of simplifications in modeling that will tend to bias model results 

higher (e.g., the assumption of temporal alignment of peaks), as well as physical considerations (e.g., the 

observed values at the USGS gage will not fully account for the contribution of surge because of the 

presence of the rock riffles).  

In general, the model results appear to be reasonable considering the high level of uncertainty involved in 

the prediction of river discharge using storm parameters, particularly given the limited fidelity of models 

and assumptions used in this case study. Limitations associated with physical modeling were discussed. 

Furthermore, an additional source of uncertainty arose from the limited number of landfall locations 

modeled for the case study region, which is consistent with other probabilistic studies. An approximation 

in landfall location caused a noticeable increase or decrease in estimated surge height (and thus the 

equivalent river discharge), which is presented in the partial-variable response functions in Figure 3-10. 

Furthermore, landfall locations notably affected the track path of the storm and thus the spatial 

distribution of the rain field leading to runoff. Storms can make landfall at any point along the coast. 

However, modeling a high number of the points along the coast is computationally expensive for the 

synthetic tracks used in the probabilistic assessment. 

The change in storm characteristic after landfall is another factor contributing to the aggregation of 

uncertainty in the model. Synthetic tracks modeled in this study did not account for the factors that affect 

the storm path on land. In the case study, synthetic tracks were generated using an idealized track path (a 

straight line) defined by a landfall location and heading direction. A different, more realistic, storm path 

can contribute to more decay of storm intensity and a change in the amount of precipitation affecting the 

area. 

In this study, hourly precipitation values were estimated using the TRR model augmented with a model to 

decay wind speeds after landfall. However, the TRR model provides the daily precipitation rate and, to 
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convert the daily precipitation rate into an hourly rate, the assumption of the uniform hourly distribution 

of the precipitation was made in this study. Furthermore, there are no well-developed 

(statistical/analytical) models for the decay of storm speed on the land, which affects the location of the 

storm at each time and the precipitation received at each point located at the upstream watershed. This 

study assumed constant forward velocity for the storm on the land, which can underestimate the estimated 

precipitation by considering the fast movement of the storm while the wind is decaying over time. 

Table 3-7. Storm parameters and surge and discharge values related to USGS gage and modeling results. 

Name 

of 

storm 

Time of 

landfall 
LAT LON 

∆𝑷 

(hPa) 

𝑽𝒘 

(km/h) 

𝜽 

(degree) 

𝑽𝒇 

(km/h) 

𝑹𝒎𝒂𝒙 

 (km) 

Tide 

at 

peak 

WL 

(ft) 

QR 

(cfs) 

USGS 

Q (cfs) 

Modal bin 

of PMF1 

for 

discharge 

Isaias 8/4/2020 

00:00 

33.7244 -78.5834 25.25 138 19 37 37 4.56 4,000 75,800 118465–

122550 

Fay 7/10/2020 

18:00 

39.5473 -74.3161 15.25 92 7 25 166 -1.86 4,500 19,000 44935–

49020 

Irene 8/28/2011 

09:00 

39.1783 -74.49 55.25 111 20 42 185 5.25 15,000 146,000 236930–

241015 

1Bin associated with the highest probability mass 

WL = water level 

 

 

Figure 3-34. Synthetic and observed storm track related to Hurricane Isaias. 
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Figure 3-35. Synthetic and observed storm track related to Tropical Storm Fay. 

 

Figure 3-36. Synthetic and observed storm track related to Hurricane Irene. 
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Figure 3-37. Location of the representative point for extracting information at landfall 

location for Hurricane Isaias. 

 

Figure 3-38. Location of the representative point for extracting information at landfall location 

for Tropical Storm Fay. 
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Figure 3-39. Location of the representative point for extracting information at landfall location 

for Hurricane Irene. 

 

Figure 3-40. Posterior distribution of the modeled discharge values for Hurricane Isaias. 
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Figure 3-41. Posterior distribution of the modeled discharge values for Tropical Storm Fay. 

 

Figure 3-42. Posterior distribution of the modeled discharge values for Hurricane Irene. 

3.7 DISCUSSION 

Based on this coastal case study, strengths and limitations of the Bayesian-motivated MMF assessment 

approach were identified. The primary advantage of Bayesian-motivated approaches is the capability to 

(explicitly) incorporate physical process knowledge in the probabilistic assessment. The Bayesian-

motivated approach develops a series of conditional probability distributions that represent the physical 

relationships between quantities, “builds up” the joint distribution from those conditional relationships, 

and then “integrates over” that joint distribution to derive marginal quantities (and specifically, 

probabilities of exceedance) of interest. This capability to integrate physical process knowledge is 

particularly useful in applications with (1) limited data (common in single-mechanism PFHAs and 
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exacerbated when considering MMFs) and (2) a need to estimate flood hazards associated with moderate 

to long return periods (including hazard severities that may not appear within the historical record). 

However, the Bayesian-motivated approach is not without challenges. 

Similar to statistics-based approaches, the Bayesian-motivated approach typically requires statistical 

analysis of observational or synthetic data series (e.g., storm parameters, tide gage data, river discharge 

data). This means that many of the statistical modeling challenges articulated in conjunction with the 

inland case study carry over into the Bayesian approach, including challenges associated with statistical 

modeling assumptions. 

Furthermore, physical process knowledge is necessary to build the probabilistic model. Thus, the 

probabilistic model is necessarily limited by the state of knowledge. When physical processes are not well 

understood or associated with epistemic uncertainties, these limitations affect the ability to develop a 

robust Bayesian-motivated model. 

The computational effort associated with the Bayesian-motivated model is non-negligible. Numerical, 

analytical, empirical, or other models are necessary to describe the relationship between involved 

quantities. In the case study developed herein, five empirical and surrogate models were used (plus 

several additional models consisting of linear superposition). Although the development of these 

empirical and surrogate models was not trivial, the use of more sophisticated numerical models would 

increase the computational requirements. Furthermore, the use of a Monte Carlo simulation to reduce 

discretization error in the development of discrete conditional PMFs requires a potentially significant 

computational effort. Finally, the process of performing calculations necessary to evaluate the expressions 

shown in Eq. (3.2) can be more challenging than statistical approaches. 
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4. SUMMARY 

This report documents two illustrative case study applications. The first case study focused on inland 

flooding, specifically snowmelt-driven extreme streamflow events, and used copulas as the main 

computational approach. The inland case study application demonstrated general procedures involved in 

the application copulas (e.g., statistical modeling steps). In addition, the case study helped to identify the 

strengths and limitations of the copula-based MMF assessment approach. A key advantage of the copula-

based approach is the general conceptual consistency with conventional univariate PFHA approaches, 

making the extension from single-mechanism to multi-mechanism assessments straightforward. Copula-

based approaches provide flexibility in statistical modeling choices. However, as with univariate 

approaches, results derived from copula-based approaches are sensitive to statistical modeling 

assumptions, and limited data may be insufficient to constrain those choices. Furthermore, although 

bivariate copula analyses are relatively straightforward to implement, extension beyond two variables 

becomes mathematically more complex. 

The second case study considered coastal hazards and used a Bayesian-motivated approach for 

probabilistic hazard assessment. An illustrative hazard curve was developed for river discharge 

accounting for the effects of river base flow, hurricane-induced surge, tides, and precipitation-induced 

runoff. The case study application demonstrates the general conceptual approach to implementing a 

Bayesian-motivated approach and used a series of empirical and surrogate models to demonstrate 

implementation. The case study helped to identify the strengths and limitations of the Bayesian-motivated 

modeling approach. The key advantage of the Bayesian-motivated modeling approach is the capability to 

incorporate physical process knowledge in the probabilistic assessment. Thus, the approach can serve to 

overcome certain data limitations and support estimation hazards of associated with moderate to long 

return periods. However, the Bayesian-motivated approach typically requires statistical analysis of 

observational or synthetic data series, which means that analyses can be sensitive to statistical modeling 

assumptions. Furthermore, the Bayesian-motivated approach simply reflects the state of knowledge. Thus, 

models derived with a Bayesian-motivated approach are subject to existing knowledge gaps. Finally, the 

computational effort associated with the Bayesian-motivated model is non-negligible and may be 

substantial. The process of performing calculations necessary to estimate exceedance probabilities of 

interest can be more challenging than statistical approaches. 

Overall, these two case studies provide examples to illustrate two approaches for the probabilistic 

assessment of MMF hazards. Given the flexibilities of both approaches, we believe that they can be 

applied more broadly in other MMF applications, not limited to the two specific cases here. Future efforts 

can be to explore the best practices to incorporate MMF analysis in PFHA, as well as to investigate other 

suitable methods / tools for more convenient MMF applications. 
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